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This paper concerns analyses of virus droplet dynamics resulting from coughing events within a confined environment

using, as an example, a typical cruiser’s cabin. It is of paramount importance to be able to comprehend and predict

droplet dispersion patterns within enclosed spaces under varying conditions. Numerical simulations are expensive and

difficult to perform in real-time situations. Unsupervised Machine Learning methods are proposed to study droplet

dispersion patterns. Data from multi-phase computational fluid dynamics simulations of coughing events at different

flow rates are utilized with an unsupervised learning algorithm to identify prevailing trends based on the distance

traveled by the droplets and their sizes. The algorithm determines optimal clustering by introducing novel metrics such

as the Clustering Dominance Index and Uncertainty. Our analysis revealed the existence of three distinct stages for

droplet dispersion during a coughing event, irrespective of the underlying flow rates. An initial stage where all droplets

disperse homogeneously. An intermediate stage where larger droplets overtake the smaller ones, and a final stage

where the smaller droplets overtake the larger ones. This is the first time Computational Fluid Dynamics is coupled

with Unsupervised Learning to study particles’ dispersion and understand their dynamic behaviour.

I. INTRODUCTION

Studying the transmission of viruses is paramount in the

post-COVID-19 pandemic era, as safety and prevention have

emerged as critical concerns. Detecting the earliest signs of

virus carriers and investigating the dynamics of virus dissem-

ination during actions such as coughing and the dispersion of

saliva droplets in enclosed environments are pivotal for public

health. Mathematical models have historically been vital in

addressing these issues, but their computational demands of-

ten result in computationally expensive simulations.1,2 Addi-

tionally, experiments conducted to validate these models also

encompass challenges and uncertainties. Limiting factors in

experiments for COVID-19 research may include the irrepro-

ducibility of in-vitro studies in in-vivo studies due to the com-

plexity of physiological processes and the behavior of geneti-

cally modified tissues..3

Machine Learning (ML) can unveil hidden patterns within

noisy or incomplete data.4–7 Unsupervised Learning (UL), in

particular, has achieved remarkable success across diverse sci-

entific domains and is better suited for problems of higher

complexity in identifying groups within data sets. These prob-

lems include deciphering complex genetic structures8, un-

derstanding natural language semantics9, and even discover-

ing astronomical phenomena10, among many others. UL is

promising because it can handle unlabelled data, including

experimental, computational or field measurements. Thus,

it does not require user intervention. Given the persistent

gaps in our understanding of the physics underlying var-

ious processes, such as virus transmission, the above be-
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comes especially pertinent. Several UL algorithms have been

developed.11–13. However, UL could encompass higher un-

certainty in engineering, physics, and biomedical applications

where the underlying physical processes remain elusive.13

The application of UL in physics and mechanics-driven pro-

cesses differs from the application of general data sets such

as in economics, marketing, or media. Classifying patterns

and predictions in fluid mechanics and engineering must be

physics-relevant and explainable. Verification and validation

of ML can be based on first principles and experimental data

(if available). Simplicity in the developed ML algorithms is

also important, as it will facilitate explainability and broader

ML application with confidence.

Recent developments in UL, such as the Reduce UNcer-

tainty and Increase CONfidence (RUN-ICON) algorithm,12

have further expanded UL’s applicability. This state-of-the-art

algorithm has demonstrated its prowess in reliably clustering

artificially generated and real-world data. Applying the RUN-

ICON algorithm on physics-based data produced by Compu-

tational Fluid Dynamics (CFD) can give invaluable insights

into the behaviour of saliva droplets emitted from coughing or

sneezing. This analysis provides a data-driven perspective on

virus transmission dynamics that was previously unattainable.

To our knowledge, combining UL and CFD in particle-driven

dynamics has yet to be carried out. It offers a promising av-

enue for advancing our understanding in an era where preci-

sion and rapid response to emerging infectious diseases are

paramount. The above motivates the present work.

The paper is organized as follows. Section II sets the

frame by discussing COVID-19 spreading and infection in

enclosed spaces. Section III presents the CFD methods and

models used in the study. Section IV presents the Unsuper-

vised Learning methods employed. The results are presented

in Section V. The conclusions drawn from this study are sum-

marized in Section VI.
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II. BACKGROUND AND MOTIVATION

The recent COVID-19 pandemic with more than 770×106

confirmed cases and nearly 7×106 deaths14 led the scientific

community to a rigorous and urgent study of how droplets and

nuclei expelled by infected individuals spread, potentially in-

fecting others, and also produce appropriate mitigation guide-

lines and strategies.

This pandemic prompted the investigation of virus trans-

mission in closed spaces.15–22, These studies discussed the

air filtration, air purification, and efficiency of HEPA filters,

which are supposed to capture more than 99% of particles,

provide high ventilation rates with 50% fresh air and 50%

filtered while delivering more than 20 changes of air in the

cabin.23 The latter is also referred to in the literature as Air

Changes per Hour (ACH) and indicates how many times the

air contained in a room could be theoretically completely re-

newed by fresh or filtered air in one hour. This calculation

is based on the ventilation system’s volumetric flow rate over

the room’s volume. It is only an indicative value as flow recir-

culation, room geometry, ventilation outlets, inlet locations,

furniture, and people can highly affect the actual time it takes

for complete air renewal. The above studies also showcased

the inevitability of virus transmission when two persons are

close.

Similarly, aerosol transmission and ventilation configura-

tion in car cabins24,25 and buses26,27 has also been the topic

of recent research. On the other hand, cruise ships and

the transmission inside passenger cabins have been presented

only with mechanistic modeling28 and data analysis from

outbreaks.29 A recent review on the transmission of COVID-

19 in cruise ships30 indicates that cabins of high occupancy

have an increased transmission risk, without commenting on

the cabin’s ventilation system and how this could have af-

fected the transmission.

CFD studies with ventilation suggestions have been lim-

ited to small vessels until now.31 Moreover, there have been

contradicting arguments in the literature regarding the re-

circulation of possibly contaminated air and the ventilation

rate efficiency in cruiser ships. Azimi et al.28 suggested high

ventilation rates in cruise ship cabins, but views differ among

authors.32–35

The most recent standards and regulations on room safety

regarding the airborne transmission of viruses focus on high

rates of air exchanges.36–38 This can be inefficient as large

energy consumption is needed to maintain high air flow rates,

while comfort can be reduced due to the creation of strong air

drafts.

The ASHRAE Standard38,39 provides a formula for the

minimum ventilation rate based on occupants and the sur-

face area of a hotel bedroom Q̇outdoor−air = Rp ×Np +Ra ×A,

where Q̇outdoor−air is the specified outdoor air that should be

supplied in the room, Rp is the required outdoor flow rate per

person, Ra is the required outdoor flow rate per unit area and

A is the floor area of the room. The appropriate values for

Rp = 2.5 ℓ/(s· person) and Ra = 0.3 ℓ/(s ·m2) are defined in

the Standard38,39 and lead to a value of 27 m3/h for the cabin

presented here, assuming 2 occupants. The cruiser designers

have proposed a stricter ventilation limit of 30 m3/h per room

occupant, while the World Health Organisation (WHO)40, the

European Federation of HVAC Associations41, and research

studies42 recommend 36 m3/h per person. The Federal Public

Service (FPS) Health, Food Chain Safety and Environment of

Belgium defined the minimum flow rate for their Standard A

Level at a slightly higher value of 40 m3/h per person.43

Considering the above discussion and two people occu-

pying a small cruiser cabin, our reference flow rate value

is 60 m3/h. The most recent CDC guidelines based on the

draft of ASHRAE Standard 241-202338, similarly by other

studies44, propose a minimum of 5 Air Changes per Hour

(ACH), which translates to a flow rate of 200 m3/h for the

cabin we investigate in this paper. The ASHRAE Standard

241-202338 recommends 15 l/s per occupant, which is equal

to 108 m3/h for the studied cabin. In comparison, a typical

home has less than 0.5 ACH based on CDC data, while this

number reduces to 0.35 ACH based on the recommendation

from ASHRAE Standard (62.2-2019).45

Air outlets

Air inlets

FIG. 1. The simulation domain used in the CFD simulations with the

main dimensions. The height of the room is 2.4 m. The location of

the coughing person is also shown for Case B, as well as the ventila-

tion inlets and outlets.

A typical cruise ship cabin was considered, and the details

can be found in46. In addition, the effect of droplet evapora-

tion has been considered, as review papers suggest,47 and not

incorrectly omitted. The role of droplets in virus spreading

and the importance of evaporation and subsequent size alter-

nation have been highlighted in the publication by Dhand and

Li.48 In our simulations, we have utilized 1.5 to 15 ACH to

capture all possible cases from poor/minimal ventilation up to

exceeding the most recent recommendations. Recently,46 it

has been demonstrated that droplets can spread up to 5 times

more when high ventilation rates are utilised in the initial

few seconds after a person has coughed. CFD simulations of
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coughing events for varying flow rates were performed, where

several droplets of varying sizes were emitted, and their tra-

jectories were recorded. The data sets from the above study

are utilised here to produce, with the aid of the RUN-ICON al-

gorithm, a classification of patterns and assess the behaviour

of the droplets.

III. CFD OF DROPLETS SPREADING

We have employed CFD simulations to generate appropri-

ate data on saliva droplets spreading from a coughing person

in a closed space. In more detail, we simulate the cabin from a

cruise ship with the overall floor dimensions shown in Fig. 1.

The cabin height is 2.4 m, with the overall deck height of the

ship being 2.8 m. A representative air conditioning unit is

placed at the cabin’s centre with a square outlet (□48 cm) and

four rectangular inlets (55 cm × 5 cm each) that expel air at

an angle of 45o. The bathroom area has an additional circular

outlet (∅25 cm). In Fig. 1, the person is at the centre of the

room, which is one of the representative cases studied here.

The geometry has been meshed with polyhedral non-uniform

cells (≈ 0.6×106), with significant refinement in all inlet and

outlet regions, where a conical refinement area is defined in

each case. For example, at the mouth and up to a distance of

0.5 m in the streamwise direction, the cells have a maximum

isotropic size of 4 mm compared to the overall targeted cell

size of 4 cm.

We employ a laminar multi-component gas model repre-

senting two distinguished Eulerian fluids: dry air and wa-

ter vapor (humidity), and saliva droplets as liquid water La-

grangian particles. The latter is only inserted from the per-

son’s mouth during coughing. Although saliva is a complex

fluid and varies from person to person, taking its viscosity

close to that of water is a valid approximation.49

Further, we utilize a compressible, unsteady multiphase

solver with the Ranz-Marshall model applied for the Nusselt

and Sherwood numbers.50,51 The ideal gas law expresses the

density as a function of temperature and pressure in our cal-

culations. At the same time, the dynamic viscosity of air and

water vapor is calculated based on Sutherland’s law. All simu-

lations have been performed in Star-CCM+ 221052 with a 2nd

order implicit temporal solver.

No-slip adiabatic boundary conditions have been applied

on all walls, the ceiling, the floor and the person’s body. The

maximum timestep used in the implicit temporal solver was

0.01 s, which was reduced to 0.5 ms during the coughing

event. Outlet boundary conditions with a specified mass flow

rate have been applied in the Air outlets, shown in Fig. 1, with

1/3 of the flow directed to the bathroom outlet and the rest

to the A/C outlet leading to a pressure balance in the cabin.

The ventilation inlets expel air with the conditions shown in

Table I, providing the overall targeted mass flow rate with the

air blowing at an angle of 45o.

During the initial 60s simulation, no saliva droplets are in

the domain to produce a fully developed airflow. The hu-

man cough is imitated over 0.12s. The velocity applied at

the mouth during the cough is ux = 8.5m/s, as measured by

T∞ (Co) P∞ (atm) RH (%)

20 1 55

Tmouth (Co) Vcough (m/s) Vbreath (m/s)

34 8.5 0.1

TABLE I. Simulation conditions. The person’s mouth is always con-

sidered an inlet with the same ambient air conditions as the ventila-

tion inlets.

Scharfman et al.53 After the coughing event, and during the

initial 60s, the air is expelled from the mouth with a low

breathing velocity of Vbreath = 0.1m/s. The initial total mass

of the injected saliva into the domain is 7.7mg, which agrees

well with existing experimental measurements reported in the

literature.54,55 The simulation continues for another 20 s, at

least, leading to a total simulation time of 80.12s, where more

than 99.99% of the saliva droplets have evaporated in all cases

presented here.

We employ the Weibull distribution56 on the size of the in-

jected saliva droplets

f =
n

d̄p

(

dp

d̄p

)n−1

e−(dp/d̄p)
n

, (1)

where dp is the saliva droplet diameter, n= 8 and d̄p = 80 µm.

Our choice is based on several previous studies,18,55,57 indi-

cating the appropriateness of this distribution for dispersing

water-like cloud droplets. We should also mention that the

Lagrangian phase equations were discretized by employing

implicit numerical schemes in the second order with two-way

coupling and a quasi-steady evaporation model. Further ge-

ometrical, meshing and solver details are given in the recent

publication by Ritos et al.46

In this study, we selected to simulate three different flow

rates for the air from the ventilation system and then utilize

the RUN-ICON Unsupervised Learning algorithm to examine

the dispersion of saliva droplets. In addition, two positions of

the coughing person, one at the far end of the room (Case A)

and one in the middle (Case B), are studied. The incoming

air is considered clean, i.e., free from contaminants, without

specifying whether it is outdoor air or treated with filtered re-

circulated air.

Representative results from the multiphase CFD simula-

tions are given in Fig. 2, where the flow field is shown with

a grey-scale contour plot at different heights from the floor,

while saliva droplets are also visualized. An extreme, high

ventilation case (600 m3/h) has been selected to highlight

the quick spreading of saliva droplets after only 8 s from the

coughing event. A significant amount of droplets has entered

the bathroom area from the door opening, covering a distance

greater than 2 m from the coughing person. Most droplets

have already settled on the floor, while some maintain a con-

siderable elevation of 40 cm from the floor level.

During the first two seconds of the coughing event, the

saliva droplets have penetrated the air up to a distance of 80 cm

while many maintain a high elevation of over 1 m from the

floor. By the latest time shown here (8 s), saliva droplets have
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a) b) c)

FIG. 2. Characteristic snapshots from the reference CFD simulations46 highlight the spreading of the saliva droplets for Case B600 at various

instances. The droplets are colored based on their distance from the floor (elevation). As expected, at the initial coughing stage, the droplets

are close to the height of the person’s mouth (1.53 m) and quickly fall to the ground due to gravity after a few seconds. a) The contour plot

shows the velocity flow at the height of z = 1.4 m from the floor, while t = 0.12 s. b) The contour plot shows the velocity field at the height of

z = 0.5 m from the floor, while t = 2 s. c) Droplet spreading at t = 8 s.

lost around 90% of their initial mass. As a result, later stages

are not shown as most droplets, if not all, will have settled

on the floor, and their overall mass will have significantly re-

duced. Further CFD results and the corresponding analysis

can be found in46.

In the following sections, the CFD results will be analysed

with the RUN-ICON algorithm to gain insight into the dynam-

ics of droplet dispersion based on their sizes and the distances

they travel from the origin. We now move on to give a brief

description of the algorithm.

IV. UNSUPERVISED LEARNING METHOD

UL represents a fundamental machine learning paradigm

that has persistently endured over the years and contin-

ues to hold paramount significance to this date in di-

verse domains of research and applications, such as image

processing58,59, sleep stages classification60 and mechanical

damage detection61.UL algorithms, however, do face several

challenges when it comes to particle clustering tasks, such

as sensitivity to hyperparameters, dimensionality and feature

selection, and scalability, among others13 The RUN-ICON

(Reduced UNcertainty-Increased CONfidence) algorithm,12

which is utilized in this work, aims to address many of these

challenges by ensuring the selection of the most dominant

clusters occurs with high confidence and low uncertainty. The

main advantage of the RUN-ICON, compared to other UL

techniques, is that it alleviates the requirement to decide on

the optimum number of clusters based only on intuitive crite-

ria. RUN-ICON offers a systematic approach to determining

the optimum number of clusters, reducing reliance on subjec-

tive judgments. The algorithm was constructed to effectively

determine the optimal number of clusters by identifying com-

monly dominant centres across multiple repetitions of the K-

means++ algorithm. The algorithm does not rely on the Sum

of Squared Errors and determines optimal clustering by intro-

ducing novel metrics such as the Clustering Dominance In-

dex (CDI) and Uncertainty. CDI is linked with the frequency

of occurrence of a specific clustering configuration when re-

questing the splitting of the data set in a certain number of

clusters and could be translated as the probability of that spe-

cific configuration occurring. Uncertainty is the relative dif-

ference between upper and lower CDI bounds for a clustering

configuration and represents the maximum variance from the

mean for that specific configuration. The algorithm, thus, con-

centrates on discerning the most resilient clusters that signify

the true inherent structure of the data. By giving precedence

to stability, the algorithm guarantees that the chosen cluster

centres accurately represent the underlying patterns while mit-

igating the influence of outliers or noisy data points. This en-

ables the generation of more robust and interpretable cluster-

ing results. The algorithm involves the following tasks:

1. Perform the K-means++ clustering algorithm 100

times, each time specifying a particular number of clus-

ters.

2. After each run, compute the coordinates of the cluster

centres.

3. Conduct a comparison of the cluster centre coordinates

from all 100 runs to identify the coordinates that appear

most frequently.

4. Select the cluster centers that exhibit the highest fre-

quency of appearance as the dominant centers corre-

sponding to the chosen number of clusters and calculate

CDI.

5. Replicate the preceding steps (steps 1-4) ten more times

to obtain ten sets of dominant cluster centres.

6. Compute the average frequency of appearance for the

dominant centers and their respective CDIs, derived

from the ten repetitions, ensuring that they correspond
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to the same clustering centers. Calculate these metrics’

upper and lower bounds and assess the variance within

this range.

7. Repeat steps 1-6 for various cluster numbers, beginning

with 3 clusters and extending up to 10 clusters.

8. Determine the cluster number with the highest average

CDI across all possible clustering scenarios, ranging

from 3 to 10 clusters. Identify the corresponding domi-

nant cluster centers and assess the variance between the

upper and lower bounds, aiming for a variance of less

than 30

9. Choose the cluster number with the highest average

CDI and low variance as the optimal number of clus-

ters for the RUN-ICON algorithm.

RUN-ICON algorithm’s advantages over different UL al-

gorithms were presented in a previous study.12 The reliabil-

ity and interpretability were established for different compu-

tational data sets where the intended clustering configuration

was known a priori. The algorithm’s accuracy in identifying

the intended clustering configurations is always about 97%

compared to 80% provided by other algorithms. Moreover,

RUN-ICON was applied to mathematically defined particle-

like dispersion13, with particles randomly left to disperse in

space. RUN-ICON recognized dominant clustering patterns

compared to other UL techniques, whereas other UL algo-

rithms failed. This further motivates the application of RUN-

ICON to different realistic flow scenarios and applications.

V. UNSUPERVISED LEARNING IMPLEMENTATION

AND DROPLET CLASSIFICATION

To apply the RUN-ICON algorithm to the specific problem

of droplet spreading, three different flow rates, four different

times from the start of the coughing event and two different

positions of the coughing person were considered (as given in

Table II).

Ten different cases were examined, and the algorithm was

required to find clusters of particles based on the final po-

sitions (distance from the origin) of droplets with different

diameters. As distance from the origin, the Euclidean norm

of a three-dimensional position vector was considered. The

number of droplets every time varied between 114,000 and

146,000, with particles having a wide range of diameters

(from 108 µm to 0.3 µm). All data were normalized between

0 and 1 to make all data scale-invariant since the problem in-

volves parameters of varying orders of magnitude. The algo-

rithm was run on an 8-core Intel i5-9300HF 8 GB RAM pro-

cessor, and its performance varied between 6.5 and 15 min-

utes, depending on the number of droplets and the number of

clusters required every time. This indicated the algorithm’s

ability to handle large data sets efficiently.

Table II presents the optimum number of clusters for each

time, the corresponding flow rate and the person’s position.

RUN-ICON predicted these clustering configurations with

(a)

(b)

(c)

FIG. 3. Clustering of droplets at time 0.12 s from the start of the

coughing event at three different flow rates and two different loca-

tions of the coughing person (a) A60, (b) B120 and (c) B600. In (a)

max-min of x-axis: 108-19 µm, max-min of y-axis: 0.35-0.004 m. In

(b) max-min of x-axis: 108-19 µm, max-min of y-axis: 0.37-0.004 m.

In (c) max-min of x-axis: 108-19 µm, max-min of y-axis: 0.32-0.004

m. The stars represent the cluster centres, and each colour indicates

droplets belonging to the same cluster.
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(a)

(b)

(c)

FIG. 4. Clustering of droplets at time 2 s from the start of the cough-

ing event at two different flow rates and two different locations of

the coughing person (a) A120, (b) B120 and (c) B600. In (a) max-

min of x-axis: 102-0.6 µm, max-min of y-axis: 0.83-0.15 m. In (b)

max-min of x-axis: 102-1 µm, max-min of y-axis: 1.1-0.15 m. In (c)

max-min of x-axis: 102-3 µm, max-min of y-axis: 1.35-0.14 m. The

stars represent the cluster centres, and each colour indicates droplets

belonging to the same cluster.

confidence very close to or equal to 100%. For every ex-

amined case, at least one other clustering configuration had

equally high confidence and predicted separation in more

clusters. However, we have decided to choose the separa-

tion in fewer clusters; choosing the simplest state of a system

without specific scientific or problem-driven reasons is a well-

established practice in science due to its empirical success,

methodological soundness, and mathematical tractability.62

Simplicity is often a powerful guiding principle in our attempt

to understand the physical world. Moreover, it was observed

that no new centre configuration was predicted for the higher

number of clusters. Rather, every new cluster resulted from

the breakup of an old cluster, not adding any further physical

information to the clustering.

Choosing "simplicity over complexity" is derived from Oc-

cam’s razor principle,63, which dictates that the simplest one

is preferred among competing hypotheses or models that

adequately explain observed phenomena. In other words,

one should choose the explanation or model that makes the

fewest assumptions or introduces the fewest entities as long

as it remains consistent with the observed data. This idea

has recently been explored in statistical learning and data

science.64,65 In clustering, simplicity is often associated with

fewer clusters and straightforward patterns. This perfectly

aligns with Occam’s razor principle. When we consider a

simple clustering with fewer clusters, the probability distribu-

tion over the data points tends to have a more straightforward

structure. The likelihood of observing the data given this sim-

pler clustering is often higher because it requires fewer param-

eters to describe. On the contrary, a more complex clustering

involving more clusters introduces additional parameters to

the model. This increased complexity may lead to overfitting,

where the model starts capturing noise or incidental structures

in the data rather than genuine underlying patterns. As a re-

sult, the likelihood of observing the data given this complex

clustering becomes lower. This reasoning may be quantified

using a probabilistic framework.

Consider a data set X with N data points, and let Z be a ran-

dom variable representing the cluster assignments. The goal

is to find the clustering Z that maximizes the likelihood of the

data set X . Mathematically, this is expressed as P(X |Z).

This is the likelihood of observing the data X given the clus-

ter assignment Z. To express within a probabilistic framework

the procedure of selecting a preferred clustering configuration,

the Bayesian Information Criterion (BIC)66 will be utilized,

which penalizes the likelihood based on the number of pa-

rameters: BIC = −2lnP(X |Z) + klnN, where k is the num-

ber of parameters and N is the number of data points. The

preferred model is the one which exhibits the minimum BIC.

The penalty term klogN discourages overly complex models,

reinforcing the preference for simplicity. Then, if the likeli-

hood for two clustering configurations, namely Z1 and Z2 (a

simpler clustering and a more complex one, respectively), is

the same, minimising BIC depends solely on k. And since a

more complex clustering for the same data points N will in-

volve more parameters, i.e., greater number of clusters, than a

simpler one, the penalty term will become greater in the case

of the more complex clustering. In this way, BIC1 < BIC2
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Time (s) Flow rate (m3/h) Case Optimum # of clusters

0.12 60 A 3

0.12 120 B 3

0.12 600 B 3

2 120 A 3

2 120 B 5

2 600 B 3

4 120 B 3

4 600 B 3

8 120 B 3

8 600 B 3

TABLE II. Times after the start of the coughing event, flow rates,

case (indicating the person’s position) and optimum number of clus-

ters.

implies that the simpler model is more likely to constitute a

more faithful representation of the underlying structure in the

data set. This inequality expresses the probabilistic rationale

behind preferring simpler clustering.

Figure 3 presents the clustering of droplets at time 0.12 s

from the start of the coughing event. In this figure and all

subsequent ones, the x-axis represents the normalized droplet

diameter, and the y-axis represents the normalized distance

from the origin of the droplets. Three distinct clusters for all

3 cases were predicted, with a stratification of droplets based

on the distances they have traveled from the origin. Since

only a very short time from the event had passed, the droplets

seemed to disperse across space homogeneously, irrespective

of their size. Only a few of the smallest droplets seemed to

have moved further away from the origin.

Figure 4 presents the clustering of droplets at time 2 s from

the start of the coughing event. As can now be observed, 3

(for flow rates A120 and B600) or 5 (for flow rate B120) clus-

ters were predicted. As the flow progressed, the largest par-

ticles, due to the flow dynamics, started moving faster than

the smaller ones, thus overtaking them and moving further

away from the origin. As observed, flow rate B120 5 clusters

are predicted, rather than 3, as is the case for all other flow

rates and times. This is because a transitional state in the sys-

tem occurs at this specific flow rate and time, where multiple

configurations or phenomena coexist. This could manifest as

additional clusters in the feature space.

In Figure 5, the clustering of droplets at time 4 s from the

start of the coughing event is presented for two flow rates

(namely, B120 and B600). As can now be observed, the al-

gorithm predicted separation into 3 clusters. At this flow in-

stance, the smaller particles seemed to increase their momen-

tum and, thus, start to catch up with the largest particles, es-

pecially with the higher flow rate.

Finally, in Figure 6, the clustering of droplets at time 8 s

from the start of the coughing event is presented for two flow

rates (namely, B120 and B600). The algorithm predicted sep-

aration into 3 clusters. At this flow instance, the smaller parti-

cles seemed to have fully caught up with the largest particles.

The smaller particles have overtaken the larger ones for the

highest flow rate, and those particles have moved further away

from the origin with the airstream. The larger droplets have

(a)

(b)

FIG. 5. Clustering of droplets at time 4 s from the start of the cough-

ing event and location B at two different flow rates (a) 120 m3/h and

(b) 600 m3/h. In (a) max-min of x-axis: 95-0.3 µm, max-min of y-

axis: 1.63-0.32 m. In (b) max-min of x-axis: 95-1.14 µm, max-min

of y-axis: 1.92-0.27 m. The stars represent the cluster centres, and

each colour indicates droplets belonging to the same cluster.

fallen to the ground by that time.

The results suggest a discernible pattern in droplet disper-

sion dynamics during coughing events, demonstrating a re-

markable consistency across varying flow rates and droplet

diameters. These results underscore the presence of three dis-

tinct stages within the temporal evolution of droplet disper-

sion, irrespective of the initial conditions.

In the initial phase, there is an evident homogeneity in

droplet dispersion, characterized by a uniform dispersion of
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(a)

(b)

FIG. 6. Clustering of droplets at time 8 s from the start of the cough-

ing event and location B at two different flow rates (a) 120 m3/h and

(b) 600 m3/h. In (a) max-min of x-axis: 82-0.6 µm, max-min of y-

axis: 1.89-0.64 m. In (b) max-min of x-axis: 81-0.53 µm, max-min

of y-axis: 2.62-1 m. The stars represent the cluster centres, and each

colour indicates droplets belonging to the same cluster.

droplets, regardless of their sizes. An initial even distribution

of droplets in the surrounding environment marks this phase.

This homogeneous dispersion is considered to be indicative of

the immediate effects of the force exerted during the coughing

event.

Following the initial stage, a transitional phase emerges,

wherein larger droplets exhibit greater momentum, surpassing

their smaller counterparts and manifesting an overtaking phe-

nomenon. This enhanced momentum of larger droplets during

this intermediary stage suggests a size-dependent influence on

their trajectories, leading to an asymmetry in the spatial distri-

bution of droplets. The discernible divergence in trajectories

based on droplet size is a critical observation, shedding light

on droplet behavior dynamics during the mid-phase disper-

sion.

Ultimately, the system undergoes a third stage, character-

ized by a noteworthy reversal of the observed size-dependent

droplet behaviour disparities. In this final stage, the larger

droplets, having initially outpaced their smaller counterparts,

exhibit a deceleration in their momentum. This phenomenon

results in a convergence of velocities between larger and

smaller droplets, eventually culminating in the smaller par-

ticles overtaking their larger counterparts.

This droplet’s behaviour seems to be confirmed by recent

experimental data from a hospital ward.67 even though the

flow rates and droplet sizes differ, the experimental data seem

to indicate that during the initial stages of coughing, big and

small droplets were concentrated at similar lateral distances

from the origin. Then, as time progressed, the large droplets

seemed to overtake the small ones marginally. Then, after ap-

proximately 15 s, the small droplets overtake the larger ones

in the lateral direction. The presence of the largest droplets in

the experiments stopped after approximately 30 seconds since

the flow conditions were probably such that they had all fallen

on the floor, and they were not taken into account in the flow

patterns any more.

The observed reversal of behavior implies a dynamic in-

terplay of forces within the ambient environment, poten-

tially influenced by inter-droplet interactions or other un-

derlying physical mechanisms. The complexity inherent in

these dynamics emphasizes the necessity for additional re-

search to clarify the exact contributing factors and mecha-

nisms that govern the observed stages of droplet dispersion

during coughing events.

VI. CONCLUSIONS

This work used CFD data and Unsupervised Machine

Learning to study airflow dynamics in a cruise ship cabin,

where coughing events occurred, and the trajectories of emit-

ted droplets of different sizes were recorded. Three differ-

ent flow rates and two different locations of the coughing per-

son were used, while the final positions of the droplets were

recorded at times 0.12 s, 2, s, 4, s and 8 s after the event’s start.

Then, the model results were used as input to the RUN-ICON

UL algorithm. Despite the many particles involved (well over

100,000 droplets emitted during each event), the algorithm

managed to predict a dominant clustering configuration with

high confidence for all different flow rates. The conclusions

of these predictions are summarized as follows:

• At the start of the event (0.12 s), all droplets seemed to

disperse homogeneously, irrespective of size.

• As time progressed (at 2 s), a clear separation of larger

particles appeared, overtaking the smaller ones and

moving further away from the origin.
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• When more time was given to the particle flow to evolve

(at 4 s), the smaller particles seemed to be catching up

with the larger ones in the distances that they traveled.

• At the final recorded time (8s), it was obvious that the

smaller particles (especially those in the ventilation case

with the highest flow rate) had already overtaken the

larger particles and moved further away from the origin.

Most of the larger particles had settled on the floor by

that time.

According to these findings, irrespective of flow rates and

droplet diameters, three distinct stages of droplet dispersion

exist during a coughing event. Initially, droplets disperse

homogeneously, irrespective of their sizes; then, the larger

droplets overtake the smaller ones and move faster away from

the origin; in the final stage, the larger particles seem to lose

their momentum, thus allowing the smaller particles to catch

up and overtake them.

The combination of CFD and UL, as presented in this work,

for studying viral droplet dispersion in enclosed spaces is be-

lieved to be the first of its kind. This study provides insights

into the temporal evolution of droplet dispersion, revealing

distinct stages characterized by size-independent homogene-

ity, size-dependent overtaking, and a subsequent reversal of

the size-dependent dynamics. These observations have signif-

icant implications for our understanding of respiratory droplet

dynamics, with potential applications in public health, epi-

demiology, and the design of effective mitigation strategies in

the context of infectious disease transmission. Further work

is already underway, with more physical experiments and nu-

merical simulations being performed for different spaces and

airflow configurations to accurately assess the impact of ven-

tilation in the transmission of respiratory diseases in enclosed

spaces, such as ship cabins.
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