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This paper examines the temperature distribution in a closed, rectangular room equipped with an air conditioning

system, employing a computational fluid dynamics model to simulate a virtual thermal camera that captures detailed

temperature snapshots. A super-resolution framework enhances the post-processing of these results. Specifically, con-

volutional neural networks, trained on simulation data, are used to accurately model temperature fields’ high-resolution

spatial and temporal evolution. The model demonstrates strong performance by accurately reconstructing temperature

profiles from low-resolution inputs obtained from filtering data obtained using high-resolution numerical simulations,

with quantitative metrics indicating acceptable accuracy for resolutions reduced by up to 50 times. This effectively

aligns with ground truth profiles under various conditions. These results underscore the super-resolution model’s po-

tential to transform environmental monitoring in smart buildings and complex structures by generating high-resolution

thermal maps from low-resolution cameras or limited sensor input. This approach offers a fast, cost-effective, and

reliable method for accurately modeling thermal dynamics within the turbulent flow environments of interior spaces.

I. INTRODUCTION

Accurately estimating environmental conditions like tem-

perature and humidity in indoor and outdoor spaces is crucial

for effective building design and analysis.1,2 In the context

of global warming and urban heat islands, numerous strate-

gies have been developed to enhance thermal environments.3

Among these strategies, the installation of thermal cam-

eras stands out as a practical solution. Thermal cameras

can provide two-dimensional and even photo-realistic three-

dimensional visualizations of room temperature.4 By detect-

ing infrared radiation, these cameras can monitor and capture

temperature data, which can then be used to analyze the ther-

mal properties of various structures. Variations in temperature

values manifest as changes in pixel attributes such as color,

brightness, and contrast within the thermal images.5

In a different methodological approach, computational fluid

dynamics (CFD) simulations are extensively utilized to es-

timate airflow properties. The choice of method is contin-

gent upon the desired level of accuracy. Commonly em-

ployed simulation techniques, ranging from lower to higher

fidelity, include Reynolds Averaged Navier Stokes (RANS),

Large Eddy Simulation (LES), and Direct Numerical Simu-

lation (DNS).6–10 However, achieving high-resolution fields

can be computationally prohibitive and challenging practical

applications. Typically, parameter fields are visualized as two-

dimensional (2D) contours; hence, reducing computational

costs is imperative. Integrating deep learning (DL) techniques

into these simulations offers a promising solution.11

To ensure thermal comfort in contemporary building appli-

cations, several AI-driven predictive methods have been intro-

duced, including Artificial Neural Networks (ANNs), Support

Vector Machines (SVMs), Random Forests (RF), and various

a)Electronic mail: Author to whom correspondence should be addressed:

drikakis.d@unic.ac.cy

tree-based variants.12–14 While effective for property predic-

tion tasks, these methods often struggle with large-scale data

applications like imaging or complex problem-solving. Here,

DL algorithms excel, demonstrating impressive performance

on intricate tasks.15

Apart from surrogate models that follow an end-to-end ap-

proach, efforts to integrate CFD simulations with Machine

Learning (ML) and DL methods have been reported16, trying

to minimize the inherent computational load. For instance,

"CFDNet", a physical simulation and deep learning coupled

framework, combines CFD with DL to boost the convergence

speed of RANS, achieving acceleration up to 7.4 times in var-

ious flow cases.17 The gene-expression programming (GEP)

method has also been combined with RANS for turbulent flow

investigation.18 Bode and Göbbert 19 propose a DL-assisted

large-eddy simulation (LES) framework that exploits DNS

data both to train the DL network and extract the ensemble

statistics. In Kashefi, Rempe, and Guibas 20 , CFD grid infor-

mation input enters a DL network, and flow results are ob-

tained faster and with high accuracy.

The analysis of turbulent flow fields characterized by dy-

namic properties such as velocity, temperature, vorticity, and

pressure, as well as 2D and three-dimensional (3D) image

reconstruction from sparse data, presents a viable option.

This process involves correlating image pixel values with cal-

culated properties via post-processing analysis.21,22 Several

DL architectures have been developed to tackle such chal-

lenges, utilizing layer-wise approaches to synthesize non-

linear functions.23–26

A particularly relevant DL method for image reconstruc-

tion is the super-resolution (SR).27,28 SR focuses on training

networks with high-resolution (HR) and low-resolution (LR)

pairs of 2D data, learning their mapping for application in sce-

narios lacking HR data. However, transitioning from HR to

LR images can introduce degradation issues due to the loss of

high-frequency features such as sharp edges and textures.29

Low-frequency areas, like large uniform backgrounds, gen-

erally remain unaffected. In practice, LR fields can result from
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low-resolution sensor measurements, such as those from cam-

eras or pressure sensors, where high-resolution alternatives

are impractical due to financial or technological constraints.

Moreover, low-grid simulations, which are computationally

less demanding, can also yield LR results. Employing post-

processing reconstruction methods to upscale LR images is

therefore critical, aiding in replicating original quality features

as closely as possible to the ground truth.30–32

In SR applications, monitoring information flow from

sparse sensor networks involves mapping data to a compu-

tational grid, typically a 2D grid resembling a low-resolution

image. The LR image is reconstructed to yield an HR field

without additional sensors. Given the ultra-low resolution of

field images, sensor placement becomes paramount33. De-

spite the potential challenges such as image noise34, com-

putational solutions often offer advantages over experimental

ones, circumventing technical issues like camera shake, lens

defocus, and atmospheric interference35.

High-dimensional data handling presents challenges, in-

cluding hardware limitations, memory demands, and slow ex-

ecution times. Standard DL architectures, like feed-forward

neural networks, are not well-suited for these applications36.

Instead, more efficient architectures such as convolutional

neural networks (CNNs) are employed.37–39 CNNs process

2D or 3D images through convolution operations, produc-

ing outputs that retain key image features while minimizing

data volume.40 Key considerations for CNN-based SR ap-

plications include (i) the depth of internal layers41, (ii) the

convolution and deconvolution pipeline, often forming a U-

shaped network42, (iii) the selection of pooling layers (max or

average)39, and (iv) the inclusion of residual/skip connections

to transfer high-fidelity information between input and output

layers.43

The current baseline setup involves an indoor environment

with temperature control managed by an air-conditioning

(A/C) system. CFD simulations model the flow of conditioned

air, and a succession of 2D iso-surface temperature field im-

ages are extracted for subsequent analysis. A DL architecture

is trained on these data sets to map sparse input onto a high-

resolution grid.44,45 This method enables a camera device to

provide a complete temperature map of the space while elim-

inating additional sensor devices. The proposed approach of-

fers a pragmatic and cost-effective solution for simulating de-

sired flow properties within buildings.

Subsequent sections detail the CFD simulation methodol-

ogy and the processes for obtaining accurate temperature con-

tours. They also provide a comprehensive explanation of the

SR architecture and reconstruction framework. Results from

reconstructed temperature profiles are presented, along with

an error analysis to evaluate the method’s efficacy. The study

summarizes key findings and suggests future research direc-

tions for integrating computational models with real-world de-

vices.

II. FLUID FLOW AND DEEP LEARNING METHODS

A. Fluid Flow Model

The three-dimensional Navier-Stokes (NS) equations for a

Newtonian viscous air mixture are considered. For a finite

control volume, V , the multi-component NS equations can be

written in the fully-conservative and Cartesian co-ordinates

form as follows:46

∂

∂ t

˚

V

ρ dV =

‹

A

−ρu · n̂dA, (1)

∂

∂ t

˚

V

ρudV =

‹

A

(−ρ u⊗u− pI+ τ) · n̂dA

+

˚

V

ρfb dV,

(2)

∂

∂ t

˚

V

ρet dV =

‹

A

(−ρhtu+u · τ −qc −qd) · n̂dA

+

˚

V

ρ
(

fb ·u+ ḣ
)

dV,

(3)

∂

∂ t

˚

V

ρw j dV =

‹

A

(−ρw ju+J j) · n̂dA

+

˚

V

ρẇ j dV,

(4)

where ρ is the mixture density; u is the velocity vector; p is

the static pressure; n̂ is the outward pointing unit normal of

a surface element dA of the closed finite control volume dV;

fb is an external body force; ht = et + p/ρ is the total specific

enthalpy (per unit mass); et = e+u ·u/2 is the total specific

energy; e = cvT is the specific internal energy; w j is the mass-

fraction of the j-th species. We denote T the temperature, cv

the specific heat capacity at constant volume, and γ = cp/cv

the heat capacity ratio where cp and cv are the specific heat

capacity at constant pressure and volume, respectively.

For a Newtonian fluid, the shear stress tensor is given by:

τ = λ (∇ ·u)I+µ
[

∇⊗u+(∇⊗u)T
]

, (5)

where I is the identity tensor, λ = −2µ/3 is the second vis-

cosity coefficient given by the Stokes hypothesis, and µ is the

dynamic viscosity. The heat flux is calculated according to

Fourier’s Law of heat conduction, i.e., qc = −κ ∇T , where

κ = cpµ/Pr is the thermal conductivity and Pr is the Prandtl

number. The species diffusional fluxes are commonly com-

puted via the Fickian (gradient) diffusion approximation, i.e.,

Jj = ρD j∇w j, where D j = µ j/(ρ Sc j) is the jth species mass
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diffusivity and Sc is the Schmidt number. The energy equation

includes the inter-diffusional enthalpy flux arising from the

species mixing47, i.e., qd =−∑
Nsp

i=1 hiJi, where the enthalpy of

each i-th species is defined by hi = ei+ pi/ρi. No heat or mass

sources, i.e., ˙(h) and ˙(y), are considered in the present study.

The above formulation of the governing equations rep-

resents the fully conservative 4-equation model of Allaire,

Clerc, and Kokh 46 . Equation (1) governs the evolution of the

mixture density while Eq. (4) is used for the density of the first

component (ρ1 = ρw1). The density of the second component

is then obtained from the mixture relation ρ = ρw1 +ρw2.

Equations 1–4 are solved in dimensionless form. The

reference units used are [L]ength = Lref, [M]ass = L3
refρref,

[T]ime = Lref/uref, and [t]emperature = Tref. Suppose su-

perscript {∗} designates a variable in units. In that case,

the dimensionless variable is obtained by dividing by the ap-

propriate reference unit(s), e.g., ρ = ρ∗/ρref, u = u∗/uref,

p = p∗/
(

ρrefu
2
ref

)

, T = T ∗/Tref, and all remaining variables

follow suit. Note that in the case the viscosity is taken as a

constant, it is non-dimensionalized according to µ = µ∗/µref,

or otherwise µ = 1/Reref where Reref = ρrefurefLref/µ∗. How-

ever, the present calculations employ Sutherland’s Law to cal-

culate the dynamic viscosity.

B. CFD Method

The simulations used the CFD code CNS3D (Compress-

ible Navier-Stokes 3D)48–50, which employs a Godunov-type

method for advective terms, solved via the Riemann prob-

lem. CNS3D supports Reynolds-Averaged Navier-Stokes

(RANS), Implicit Large Eddy Simulation (ILES), and Di-

rect Numerical Simulation (DNS).50–53 In this paper, we have

used the ILES framework.54,55 ILES in CNS3D has been ex-

tensively validated over several cases published in the above

literature.50,51,56,57

Regarding the numerical methods in CNS3D, the

“Harten–Lax–van Leer-contact HLLC” Riemann solver58 is

used. The reconstruction of the flow variables at the cell faces

is performed using a modified 11th-order weighted essentially

non-oscillatory (WENO) scheme50 that handles low-Mach

number issues better than the Monotonic Upstream-centered

Scheme for Conservation Laws (MUSCL) schemes57,59 when

low-Mach corrections are used.60 Higher-order methods pro-

vide better accuracy57,59 and scale well over large systems.

Phase variables are reconstructed following the papers of61,62

to prevent spurious oscillations at fluid interfaces. Viscous

terms use a fourth-order central scheme48,51, advanced in time

by a five-stage Runge-Kutta method.50 More information on

CNS3D and its validation can be found in50,51 and other ref-

erences therein.

C. Domain setup & boundary conditions

The temperature of a closed rectangular indoor region, with

dimensions of 6.0 × 2.4 × 2.8 meters (length × height ×
width), is controlled by an A/C unit. The unit is placed at the

center of the ceiling and comprises a square outlet (48 cm2)

and four rectangular inlets (48×4 cm2 each), “pushing” cold

air at 18 °C and a 45°degrees angle relative to the centerline.

Figure 1 illustrates the flowfield that develops in the rectan-

gular room – about 1 minute after the A/C unit was turned

on. Based on the A/C inlet height (4 cm) and inlet velocity

(4 m/s), the inlet Reynolds number is Re j ≃ 11,000.

The initial room temperature is 25 °C with a 60% rel-

ative humidity. The simulation considers a binary multi-

component flow, such that the mass-fractions of the binary

(two-component) mixture obey w1+w2 = 1, where the values

of w1 and w2 depend on the air properties, i.e., the relative hu-

midity and temperature. The first component (w1) is dry air

(0% moisture) with an adiabatic index of γ1 = 7/5 and molar

mass of M1 = 28.964 kg/kmol. The second component (w2)

is water vapor with an adiabatic index of γ2 = 4/3 and molar

mass of M2 = 18.015 kg/kmol. The relative humidity differ-

ence between the room’s ambient air and the cooler air from

the A/C unit generally arises from the condensation within the

A/C unit. This results in a variation in the mass fractions be-

tween the two separate air streams.

The velocity is initially assumed to be equal to zero ev-

erywhere in the room. The pressure varies in the normal (y)

direction due to gravity, i.e.,

p(y) = p0 +ρgyy , (6)

where the Earth’s gravitational acceleration is taken as gy =

−9.81 m/s2. The internal energy, ei is calculated according

to:

ei =
p1 + p2

γ −1
, (7)

where p1 is the partial pressure of the dry air component in the

room and p2 is the water vapor partial pressure. The former is

obtained according to p1 = p0− p2, where p0 is the stagnation

pressure at ground/sea level, i.e., p0 = 101,325 Pa. The water

vapor pressure is calculated according to p2 = x2 p0, where

the molar-fraction is x2 = w2 (M /M2), and the total molar

mass of a miscible mixture is obtained according to:

M =
1

∑i (wi/Mi)
(8)

where wi is the mass-fraction of the i-th component. The ini-

tial air mixture density, ρ , solved by Eq. (1) is taken to be

constant and is calculated based on the prescribed relative hu-

midity, i.e., the fraction of water vapour and dry air:

ρ = ρ1 +ρ2 = ρw1 +ρw2 , (9)

where the components’ partial density can be obtained from

ρi = pi/
(

Ri
sT0

)

; Ri
s is the specific gas constant of the i-th com-

ponent and T0 is the initial (stagnation) room temperature.

We have used a block-structured hexahedral orthogonal

Cartesian mesh. The computational cells have an edge length

of 2 cm (∆x+ ≃ 700), resulting in a mesh resolution of

300 × 120 × 140, giving a total of 5,040,000 cells; the cell

size is the same in all directions: ∆x = ∆y = ∆z = 2 cm. We
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FIG. 1. Illustration of the flow field in the rectangular room considered. A/C unit is located at the centre of the ceiling.

have performed numerical experiments with coarser meshes

containing hexahedral cells with double the edge length (i.e.,

4 and 8 cm) and a finer mesh with an edge length of 1 cm. For

90 seconds of actual flow time, the results on the finer mesh

exhibited less than < 1.3% difference compared to the elected

mesh (edge length of 2 cm). ILES encompasses a wide vari-

ety of approaches that rely upon the dissipation of the numer-

ical scheme to model the small unresolved (sub-grid) scales

to dissipate the large, resolved turbulence scales. Compar-

isons of implicit and explicit modeling using the same numer-

ical method and grid show that the implicit method is much

less dissipative.63 The present setup assumes the flow from

the jet inlets to be laminar and, thus, the breakdown of the

free-shear (mixing) layer(s) to occur more gradually and at

larger scales. The fine-scale turbulence formed subsequently

is not attempted to be directly resolved as the computational

cost would otherwise become exceedingly high. Moreover,

the smaller (unresolved) scales gradually weaken and have an

increasingly smaller effect on the flow and the image data ex-

tracted and used. Note that the purpose of the present study

is not to analyze the turbulence properties of the free shear

layer(s), but rather to test the suitability of machine learning

to complex evolving flows such as the one the present study

considers.

D. Super Resolution Deep Learning

Convolutional neural networks (CNNs) have been exten-

sively applied to imaging tasks, including SR applications. In

these architectures, input 2D data is processed through net-

work layers, where spatial features are extracted and repre-

sented within filters. Although the CFD approach was sim-

ulated in 3D to ensure an accurate and realistic representa-

tion of the flow physics, the DL network layers operate in 2D

to balance computational efficiency with predictive accuracy.

The basic function of such layers is the convolution opera-

tion, where image regions are filtered and coded in batches

and passed to the next layer. The deconvolution operation per-

forms the decoding part and re-creates the input image. To en-

sure normalization between layers and increase performance,

average and max pooling layers and flatten, concatenate, and

batch normalization layers are employed.37

In fluid mechanics, CNNs are widely incorporated due to

their ability to handle sparse representations, in contrast to

ANNs, and achieve better performance in significantly lower

computational times and memory loads.64 A notable deep

learning framework for SR upscaling is the Deep Learning

Flow Image (DELFI) architecture, which has been success-

fully used for temperature field reconstruction. This architec-

ture is accurate and relatively straightforward, incorporating

CNNs and residual connections.

DELFI processes a set of LR images alongside the cor-

responding HR images, which serve as ground truth data.65

Flow images are pre-processed before entering the network

pipeline to ensure the correct dimensions. They are linearly

interpolated to the GT dimensions, making comparison and

processing inside the CNN layers possible. Next, they pass

through successive CNN layers, which generate multichannel

feature maps.66 The first CNN layer applies 64 convolutional

filters, each designed to detect distinct image features across

various frequency ranges. These filters are implemented us-

ing a 3×3 convolutional kernel, which scans the input image

regions sequentially, followed by the Rectified Linear Unit
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FIG. 2. (a) The process of taking images from a thermal camera, (b) the reconstruction architecture exploited based on DELFI, and (c) the

training process of DELFI with simulation images.

(ReLU) activation layer. The second CNN layer also employs

64 filters and ReLU activation. During the deconvolution op-

eration, residual information from the input image is incorpo-

rated to recover the possible loss, followed by a deconvolu-

tional layer. The final layer aggregates the filters to produce

a reconstructed output image with the same dimension as the

input images. This is achieved through proper calibration of

the stride and padding parameters.

This fast and easy-to-implement architecture has been

tested on various turbulent pressure and velocity fields

and has proven efficient, even when executed on standard

hardware21,41. This work uses DELFI to reconstruct and up-

scale a sparse temperature field to achieve high-resolution de-

tail. Additionally, to better understand temperature variations

across the room’s height, temperature profiles are extracted

from various regions beneath the A/C unit, where the airflow

is more rapid and turbulent, leading to finer structural details.

Figure 2 illustrates the flow diagram of the reconstruction

process. Initially, two-dimensional temperature contours are

captured using a high-resolution thermal camera within the

room (see Fig. 2a). These 2D images serve as input to the

DELFI pipeline, from which precise temperature profiles are

extracted (Fig. 2b).

The training of the DELFI model is crucial, especially in

this context where the primary challenge is accurately recon-

structing fine and small-scale turbulent structures. To tackle

this, flowfield data generated from high-resolution compu-

tational fluid dynamics (CFD) simulations (detailed in Sec-

tion II C) are utilized to construct a comprehensive training

dataset. A scaling factor, s, is used to reduce the resolution of

the high-resolution output temperature fields. Table I presents

the dimensions of the scaled images used for training.

TABLE I. Input image resolution at various scales, where s=1 is the

ground truth image.

s 1 10 20 50

W ×H 2240×896 224×89 112×44 44×17

Starting from the high-resolution (W ×H × 3) = (2240×
896× 3) coloured image, with three channels (Red, Green,

and Blue - RGB), the scaling-down factor reaches as low as

s = 50, to emulate the cases when an ultra-low resolution

field might enter the DELFI pipeline. The scaled-down low-

resolution counterparts are fed to DELFI to train the model

effectively, and the reconstructed output is compared to the

original high-resolution image. Through this process, DELFI

“learns” the mapping between a low- and a high-resolution

field so that it can apply it later in similar cases, for example,

when the input is just a low-resolution field from a real cam-

era. The CFD temperature field dataset contains 273 images,

193 of which are employed for training, 40 for validation and

40 for testing.

III. RESULTS AND DISCUSSION

For presentation purposes, three-time instances are selected

to extract the temperature (T ) profiles across the room near the
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FIG. 3. Image regions considered for extracting the temperature pro-

files, under the left exit of the A/C unit, at the centre of the room, and

under the right exit of the A/C unit (black rectangles) at various sim-

ulation times: (a) near the beginning of air-flow, (b) in the middle,

and (c) at the end of the simulation. Dimensions shown are in [cm].

simulation’s beginning, middle, and end. Figure 3 illustrates

three example contour plots corresponding to these instances.

Additionally, three specific regions are chosen for temperature

profile extraction: the first is located at the left exit of the A/C

unit (region 1), the second is in the center of the room (region

2), and the third is at the right exit of the A/C unit (region

3). These regions are characterized by turbulent airflow, thus

presenting the greatest challenges for image reconstruction.

A. Temperature profiles

From an average room temperature of 25 °C, cold air at

18 °C is expelled from the A/C unit, rapidly generating a

highly turbulent flow. In each contour image, pixels represent

temperature values. Let Ti represent the temperature in the i-

th pixel across the room height, where i = 1,2,3, . . . ,n and n

is the total number of pixels in the y-axis. The temperature

profile is defined by:

Ti =
1

Ni

Ni

∑
j=1

Ti j. (10)

where Ti is the time-averaged temperature in the i-th pixel bin

within a time-frame of Ni measurements, and Ti j is the tem-

perature measurement j for each time instance in the i-th pixel

bin.

For a reconstructed profile, the number of available pixels

across the y-axis (the image height, H) varies according to

the image resolution given by the camera (Table I). Remark-

ably, the proposed SR model can help reconstruct a tempera-

ture profile even from a 17-pixel height, low-resolution image

(s = 50).

Figure 4a displays the temperature profiles for s = 1 (i.e.,

the ground truth, GT), the SR-extracted field for s = 10, and

the respective low resolution (LR) field, at region 1, near the

start of the simulation. At this stage, only the temperature near

the room’s ceiling is expected to be affected by the colder air

emitted from the A/C unit. The SR profile aligns perfectly

with the GT profile, and is significantly better than the LR

profile, which deviates from the GT, especially near the ceil-

ing where high-temperature variations are observed. When

a lower resolution image is processed (e.g., for s = 20 in

Fig. 4b), the DELFI reconstruction achieves fine-scale results

across the room; this applies except for the highly turbulent

region in front of the left A/C exit, where some inaccuracies

are evident. These are attributed to the large temperature dif-

ferences in this region, making it hard for the SR model to

adjust effectively. These inaccuracies are more pronounced in

the LR counterpart, as seen from the profile. Nevertheless, the

overall reconstruction accuracy remains fine even when the

input image resolution drops by s = 50, as shown in Fig. 4c,

where the proposed model output qualitatively follows the GT

temperature profile. This also remains the case for region 2

(Figs. 4d-f) and 3 (Figs. 4g-i).

Near the half-time of the simulation, the cold air spreads

across the room. Airstreams can be seen chaotically reflect-

ing off the walls, and the temperature fields observed are now

highly turbulent. Figure 5 presents the obtained temperature

profiles for regions 1, 2 and 3. In this image set, temperature

changes are even more sudden and abrupt. Nevertheless, the

SR reconstructed profiles remain close to the ground truth pro-

files for s = 10− 20, and marginally for s = 50. In all cases,

they are closer to the GT than the respective LR profiles.

Finally, near the end of the simulated period, at region 1

(Fig. 6a-c), an average temperature of T = 18 °C has been sta-

bilized from the ceiling to a 100 cm region. At the same time,

it linearly increases again as we approach the floor, reaching

T = 30 °C. In region 2 (Fig. 6d-f), there is a linear increase

from 24 to 32 °C, while, in the right air outlet of the A/C

unit, an average temperature of T = 22 °C is observed from

the ceiling down to a 150 cm region. It abruptly increases

to T = 32 °C towards the floor. The SR profiles follow the

GT behavior for s = 10−20, slightly deviate for s = 50, and,

compared to the LR profiles, they seem to achieve good re-

construction results.

B. Accuracy metrics

A quantitative analysis follows, for which accuracy met-

rics are calculated to assess the reconstruction ability of the

proposed SR model. The mean absolute error (MAE), the
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FIG. 4. Temperature profiles taken near the beginning of the simulation. The SR-extracted are compared to the ground truth (GT) profiles for

region 1 and resolution (a) s=10, (b) s=20, and (c) s=50, for region 2 and (d) s=10, (e) s=20, and (f) s=50, for region 3 and (g) s=10, (h) s=20,

and (i) s=50. Red dotted lines are the respective LR inputs used for training.

root mean square error (RMSE), the coefficient of determina-

tion (R2), and the mean absolute percentage error (MAPE) are

given for a wide range of down-scaled images, s = 5−100.

The MAE is calculated as the average absolute difference

between the GT values (GTi) and the reconstructed values

(SRi):

MAE =
1

n

n

∑
i=1

|GTi −SRi|. (11)

The RMSE measures the square root of the average of the

squared differences between the GT values (GTi) and the re-

constructed values (SRi):

RMSE =

√

1

n

n

∑
i=1

(GTi −SRi)2. (12)

The R2 quantifies the proportion of the variance in the de-

pendent variable that is predictable from the independent vari-

ables. It is calculated as:

R2 = 1−
∑n

i=1(GTi −SRi)
2

∑n
i=1(GTi − S̄R)2

, (13)

where S̄R is the mean of the reconstructed values (SRi).

The MAPE measures the percentage difference between the

GTi and the SRi values, relative to the GTi. It is calculated as

the mean of the absolute percentage of errors:

MAPE =
1

n

n

∑
i=1

∣

∣

∣

∣

GTi −SRi

GTi

∣

∣

∣

∣

×100 (14)

In addition, the L2-norm and the L∞-norm are also incorpo-

rated to provide further insight into the model performance67.

The L2-norm measures the magnitude of the overall error by

computing the Euclidean distance between the ground truth

(GT ) and the reconstructed profiles (SR), as:

L2 =

√

n

∑
i=1

(GTi −SRi)2. (15)
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FIG. 5. Temperature profiles taken near the half-time of the simulation. The SR-extracted are compared to the ground truth (GT) profiles for

region 1 and resolution (a) s=10, (b) s=20, and (c) s=50, for region 2 and (d) s=10, (e) s=20, and (f) s=50, for region 3 and (g) s=10, (h) s=20,

and (i) s=50. Red dotted lines are the respective LR inputs used for training.

This metric emphasizes larger errors due to its quadratic

nature, similar to RMSE, which makes it particularly useful

for evaluating the overall accuracy of the reconstruction.

The L∞-norm, on the other hand, quantifies the maximum

absolute deviation between the ground truth and the SR-

reconstructed values:

L∞ = max
i∈{1,2,...,n}

|GTi −SRi|. (16)

By highlighting the largest error, the L∞-norm is instrumen-

tal in identifying worst-case discrepancies, which is crucial in

applications where outlier performance is critical.

Figure 7a shows the MAE values, averaged from regions

1, 2 and 3, vs. the scale factor, s. Each colour (blue, red,

green) refers to the simulation’s start, middle and end, respec-

tively, according to the analysis shown in Section III A. The

MAE remains small for s ≤ 20 but significantly increases for

s > 20, especially for the highly turbulent field near the end of

the simulation. The same behaviour is obtained for the RMSE

lines in Fig. 7b. It is also shown that R2 > 0.85 for s≤ 50 is ev-

idence of good statistical accuracy. Of significance is the fact

that R2 > 0.8 for the green line (that is, the end-time temper-

ature values) and R2 > 0.75 for the red line (i.e., the middle-

time temperature values) even when an ultra-low resolution

image (s = 100) is being processed. The trend for the MAPE

line is similar to that of MAE and RMSE, with a larger error

deviation occurring near the end of the simulation (i.e., the

green-filled region), where deviations in the reconstructed rel-

ative to the original temperature map become more apparent

(Fig. 7d).

Figure 7e presents the behavior of the L2-norm. As the

blur scale increases, the L2-norm tends to grow, reflecting the

cumulative error introduced by the degradation in image qual-

ity. Like the RMSE, it captures the overall reconstruction per-

formance with greater sensitivity to larger errors due to its

quadratic nature. As the scale increases, the LR fields contain

fewer fine details, making it progressively more challenging

for DELFI to accurately reconstruct high-frequency compo-

nents of the original profile. This loss of detail leads to an

increase in the L∞-norm (Fig. 7f), which here serves as an

effective indicator of the worst-case performance of the SR
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FIG. 6. Temperature profiles taken near the end of the simulation. The SR-extracted are compared to the ground truth (GT) profiles for region

1 and resolution (a) s=10, (b) s=20, and (c) s=50, for region 2 and (d) s=10, (e) s=20, and (f) s=50, for region 3 and (g) s=10, (h) s=20, and (i)

s=50. Red dotted lines are the respective LR inputs used for training.

model.

C. Discussion

Deep learning methods for turbulent flow reconstruction

are employed to extract the temperature map of an indoor re-

gion. These methods function synergistically with computa-

tional fluid dynamics simulations. The simulation-extracted

temperature fields are exploited to train the SR model.

After passing through DELFI, the reconstructed fields re-

semble the GT counterparts, although some smoothing ap-

pears. This is a common outcome in most SR models, where

the features that appear to be missing in the model’s output are

predominantly small-scale details that, while visually distinct,

may not significantly influence the key metrics in the target

application. This fact, however, does not necessarily mean the

model fails to enhance the LR image; instead, it suggests that

the enhancement is focused on reconstructing the most critical

aspects of the flow field, which are often the features of most

significant practical importance.

The next crucial step, of practical importance, is to incor-

porate the trained model to enhance authentic images captured

by a camera within the room. In this direction, the model can

provide high-resolution images, even if the camera images are

of ultra-low resolution, scaled down to 50 times lower than the

original. The results demonstrate the capacity of SR archi-

tectures to upscale low-level information into high-resolution

practically and rapidly, effectively providing a close-to-the-

ground truth field.

Furthermore, it has been shown that a single camera device

can be used for data collection and analysis in similar situa-

tions where monitoring a specific quantity is required. This

approach can replace a complex, specialized sensor array, of-

fering a more cost-effective solution.

The next important step is to leverage the trained model to

enhance images captured by a camera within the room. The

model can significantly improve the quality of low-resolution

camera images by generating high-resolution outputs up to 50

times larger than the original. These results underscore the
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FIG. 7. Accuracy metrics for the reconstructed profiles. (a) MAE, (b) RMSE, (c) R2, (d) MAPE, (e) L2, and (f) L∞. The filled-coloured regions

denote the property variation in regions 1, 2 and 3, while the lines correspond to the average values.

capacity of the model to provide accurate and practical SR,

offering a cost-effective alternative to specialized sensor ar-

rays for monitoring specific data.

Here, we also present temperature profiles across the room

in regions where turbulent flow is observed, causing tem-

perature values to vary widely in time and space. The re-

constructed profiles are compared to the ground truth (i.e.,

the high-resolution simulation profiles). The quantitative er-

ror measures, such as the MAE, RMSE, MAPE, L2, and L∞

increase with lower input image resolution. However, they

remain at satisfying levels even when the down-scaling ap-

proaches values of s = 50 − 100. The coefficient of deter-

mination remains high even for s ≤ 50 (R2 > 0.80), showing

good statistical accuracy during the reconstruction process.

For applications requiring highly detailed local features, the

model’s current behavior might necessitate further refinement.

To improve the preservation of finer features, an advanced

computational framework would include adversarial training

(e.g., with GANs) or hybrid approaches that combine phys-

ical priors or constraints with DL to ensure that the recon-

structed output adheres to known physical laws. Regarding

the data acquisition setup, future advancements of this work

will involve integrating the computational platform with a real

thermal camera and a sensor array to assess the model’s per-

formance with actual data. We believe such implementations

will offer viable solutions for smart buildings and more com-

plex constructions. These technologies can be integrated into

initial designs, accurately monitoring several environmental

parameters such as temperature, pressure, indoor air quality,

and harmful particle concentration.

IV. CONCLUSIONS

The study focused on reconstructing temperature profiles

in a room using an SR model to enhance images from a sin-

gle camera, aiming to replace complex sensor arrays. The

research evaluates temperature profiles at three specific time

points during a simulation: near the start, middle, and end.

Three regions within the room experiencing the most turbu-

lent airflow are analyzed.

Results demonstrate that the SR model can reliably recon-

struct temperature profiles from low-resolution images across

different regions, even with a 17-pixel height. Despite some

inaccuracies in highly turbulent areas, the model’s overall ac-

curacy remains satisfactory, with outputs closely matching the

ground truth, especially for downscaled images up to s = 50.

Quantitative analyses using accuracy metrics indicated that

errors increase with lower input image resolutions yet re-

main acceptable for s ≤ 50. The findings suggest that the SR

model offers a cost-effective alternative to sensor arrays by

efficiently generating high-resolution temperature maps from

low-resolution camera inputs.

The future direction includes integrating the model with
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real thermal cameras and sensors to evaluate performance

with actual data, aiming to develop viable solutions for moni-

toring environmental parameters in smart buildings and com-

plex structures.
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