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1)Institute for Advanced Modeling and Simulation, University of Nicosia, Nicosia, CY-2417, Cyprus
2)Laboratory of Applied Mathematics, University of Crete, Heraklion GR-70013, Greece

This study presents a novel methodology for optimizing probe placement in indoor air-conditioned environments by

integrating computational fluid dynamics simulations with artificial intelligence techniques in an unsupervised learn-

ing framework. The ’Reduce Uncertainty and Increase Confidence’ algorithm identified spatially distinct thermal and

velocity clusters based on temperature and velocity magnitude distributions. Optimization of probe positions within

these clusters, guided by sequential least squares programming, resulted in an effective strategy to minimize probe re-

dundancy while maximizing spatial coverage. The methodology highlights the interplay between temperature, relative

humidity, velocity, and turbulence intensity, revealing critical insights into airflow behavior and its implications for

occupant comfort. The findings of the presented study underscore the potential for targeted probe placement to provide

a robust framework for advanced indoor climate control.

I. INTRODUCTION

Indoor thermal comfort significantly influences human

health, productivity, and living standards. Modern buildings

utilize Heating, Ventilation, and Air Conditioning (HVAC)

systems to maintain thermal comfort.1,2 Various studies have

explored how ventilation affects indoor thermal comfort us-

ing methods like sensor technology, yet these can be time-

consuming or costly.3 Experimental methods have been used,4

but require substantial time and resources, presenting a chal-

lenge when multiple scenarios must be evaluated.

Computational models have been utilized to predict thermal

comfort indoors.5,6 Yet, these models often face challenges

due to computational costs and the intricate nature of turbu-

lent flows, which encompasses uncertainties inherent in tur-

bulent dynamics and the logistical complexity of large-scale

measurements and computations.7–9

Artificial Intelligence (AI) provides a robust framework

for uncovering hidden structures within noisy and incom-

plete data sets.10. In particular, unsupervised learning (UL)

has demonstrated exceptional potential in tackling complex

scientific problems, especially in the grouping and classify-

ing of data sets. Applications of UL span diverse fields, in-

cluding unravelling genetic complexities11, advancing natural

language processing12, particle dynamics13, and astronomical

phenomena.14

One of the key advantages of UL is its ability to analyze

unlabeled data, such as experimental observations, computa-

tional outputs, or field measurements, with minimal human

intervention. This feature is especially critical in areas where

the underlying physics is not yet fully understood.15,16 Apply-

ing UL in engineering, physics, and biomedical sciences of-

ten encounters higher levels of uncertainty, given the intricate

and poorly understood physical processes involved.17 Unlike

general data in marketing or economics, clustering and pre-

diction in fluid mechanics and engineering, in general, must
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align with physical principles and remain explainable. Re-

cent advances in UL algorithms, such as the Reduce UNcer-

tainty and Increase CONfidence (RUN-ICON) algorithm16,

have demonstrated increased effectiveness in clustering and

identifying regions of interest in datasets with high complex-

ity.

This study aims to integrate CFD simulations with UL to

explore comfort zones in a room where an HVAC supplies

colder air at lower temperature and relative humidity, and the

evolution of parameters, such as air velocity, temperature, and

relative humidity, is recorded at 728 locations in the room.

The study is structured into the following stages: (i) Data

preprocessing: Trends and correlations in velocity, temper-

ature, and relative humidity data obtained by computational

fluid dynamics (CFD) are identified after the turbulent flow

has evolved for some time. (ii) Clustering using RUN-ICON:

Later flow stages are analyzed to uncover dominant clusters

corresponding to flow regions of interest. (iii) Non-linear

programming: Key spatial coordinates representing comfort

zones are determined, leveraging optimization techniques to

refine the accuracy of the clustering results. (iv) Turbulence

analysis: Detailed studies of turbulence characteristics are car-

ried out in these locations to understand their role in comfort

and airflow dynamics.

This research highlights the potential benefits of integrat-

ing Unsupervised Learning (UL) with Computational Fluid

Dynamics (CFD) to overcome challenges in designing effi-

cient HVAC systems for turbulent indoor environments. The

study offers practical strategies to enhance indoor air quality

and thermal comfort, setting the stage for more efficient and

adaptable air conditioning designs.

In Section II, we introduce the issue of identifying comfort

zones in air-conditioned spaces, including a detailed explana-

tion of the data collection process facilitated by CFD model-

ing. Section III provides an overview of the RUN-ICON algo-

rithm, while Section IV presents the clustering and turbulence

analysis results using non-linear programming techniques.

Finally, Section V summarizes the study’s key findings

and proposes future directions for integrating Artificial Intelli-

gence (AI) with CFD to advance HVAC system design further.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
5
1
7
4
9



2

II. FLOW AND ENVIRONMENTAL DATA INDOORS

The temperature of a closed rectangular room, measuring

6.0×2.4×2.8 meters (length × height × width), is controlled

by an air conditioning (AC) unit. The unit is placed in the

center of the ceiling and comprises a square outlet (48 cm2)

and four smaller rectangular shaped inlets (48× 4 cm2 each)

that eject cold air at 18 °C at a 45°degree angle relative to

the ceiling plane centerline. Figure 1 illustrates the flowfield

that develops in the rectangular room – about 1 minute after

the AC unit is turned on. Typically, in suddenly expanded

flow, an effective diameter can be estimated such that the area

of the circle is equal to that of the rectangular plane. Thus,

based on the AC inlet(s) effective diameter and the velocity of

the ejected cold air (4 m/s), the inlet Reynolds number is just

above Re j ≃ 40,000. Figure 2 provides further information on

the position and dimension of the commercial four-way square

cassette AC unit considered that is commonly encountered.

The initial room temperature is 25 °C with a 60% relative

humidity. The simulation considers a binary multi-component

flow. The first component is dry air (0% moisture) with an adi-

abatic index of γda = 7/5 and molar mass of Mda = 28.964

kg/kmol. The second component is water vapor with an adi-

abatic index of γwv = 4/3 and molar mass of Mwv = 18.015

kg/kmol. The velocity is initially assumed to be equal to zero

everywhere in the room. The pressure varies in the normal (y)

direction due to gravity, i.e.,

p(y) = p0 +ρmgyy , (1)

where the Earth’s gravitational acceleration is taken as gy =

−9.81 m/s2. The internal energy, ei is calculated according

to:

ei = (pda + pwv)/(γ −1) (2)

where pda is the room pressure of the dry air component and

pwv is the water vapor pressure. The former is obtained ac-

cording to pda = p0 − pwv, where p0 is taken here as the stag-

nation pressure at ground/sea level, i.e., p0 = 101,325 Pa. The

water vapor pressure is calculated according to pwv = xwv p0,

where the molar-fraction is xwv = wwv (M /Mwv), and the to-

tal molar mass of a miscible mixture is obtained according to:

M =
1

∑i (wi/Mi)
(3)

where wi is the mass-fraction of the i-th component. The

initial air mixture density, ρm, is taken to be constant and is

calculated based on the prescribed relative humidity, i.e., the

fraction of water vapour and dry air:

ρm = ρda +ρwv (4)

where the individual component density is calculated from

ρi = pi/
(

Ri
sT0

)

. Here, Ri
s is the specific gas constant of the

i-th component, while T0 is the initial (stagnation) room tem-

perature.

A block-structured hexahedral orthogonal Cartesian mesh

is employed. The computational cells have an edge length

of 2 cm (∆x+ ≃ 700), resulting in a mesh resolution of

300 × 120 × 140, giving a total of 5,040,000 cells; the cell

size is the same in all directions: ∆x = ∆y = ∆z = 2 cm. We

performed numerical experiments with coarser meshes con-

taining hexahedral cells with double the edge length (i.e., 4

and 8 cm) and a finer mesh with an edge length of 1 cm. For

90 seconds of actual flow time, the results on the finer mesh

exhibited less than < 1.3% difference compared to the elected

mesh (edge length of 2 cm).18

A. Governing equations

The three-dimensional Navier-Stokes Equations (NSE) for

a Newtonian viscous air mixture are considered. For a finite

control volume, V , the multi-component NSE can be written

in the fully-conservative form as follows19:

∂

∂ t

˚

V

ρ dV =

‹

A

−ρu · n̂dA (5)

∂

∂ t

˚

V

ρudV =

‹

A

[−ρ uu− pI+ τ] · n̂dA

+

˚

V

ρfb dV

(6)

∂

∂ t

˚

V

ρet dV =

‹

A

[−ρhtu+u · τ −qc −qd] · n̂dA

+

˚

V

ρ
[

fb ·u+ ḣ
]

dV

(7)

∂

∂ t

˚

V

ρy j dV =

‹

A

[−ρy ju+J j] · n̂dA

+

˚

V

ρ ẏ j dV ,

(8)

where ρ is the density; u is the velocity vector; p is the static

pressure; n̂ is the outward pointing unit normal of a surface

element dA of the closed finite control volume dV; fb is an ex-

ternal body force; ht = et + p/ρ is the total specific enthalpy

(per unit mass); et = e+ u ·u/2 is the total specific energy;

e = cvT is the specific internal energy; y j is the mass-fraction

of the j-th species. We denote T the temperature, cv the spe-

cific heat capacity at constant volume, and γ = cp/cv the heat

capacity ratio where cp and cv are the specific heat capacity at

constant pressure and volume, respectively.

For a Newtonian fluid, the shear stress tensor is given by:

τ = λ (∇ ·u)I+µ
[

∇⊗u+(∇⊗u)T
]

, (9)
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FIG. 1. Illustration of the computational domain. As shown, the room’s length is 6 m, its height 2.4 m, and its width 2.8 m. The air conditioning

unit is centrally located on the ceiling of the room. The (x: 0 m, y: 0 m, z: 0 m) point is located at the bottom left inner corner of the room.
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FIG. 2. Sketch illustrating the size and location of the commercial

four-way square cassette AC unit considered.

where I is the identity tensor; λ = −2µ/3 is the second vis-

cosity coefficient given by the Stokes hypothesis; µ is the

dynamic viscosity. The heat flux is calculated according to

Fourier’s Law of heat conduction, i.e., qc = −κ ∇T , where

κ = cpµ/Pr is the thermal conductivity and Pr is the Prandtl

number. The species diffusional fluxes are commonly com-

puted via the Fickian (gradient) diffusion approximation, i.e.,

Jj = ρD j∇y j, where D j = µ j/(ρ Sc j) is the j-th species mass

diffusivity and Sc is the Schmidt number. The energy equation

includes the inter-diffusional enthalpy flux arising from the

species mixing20, i.e., qd =−∑
Nsp

i=1 hiJi, where the enthalpy of

each i-th species is defined by hi = ei+ pi/ρi. No heat or mass

sources, i.e., ḣ and ẏ, are considered in the present study.

B. Computational method

The computational data are obtained using the block-

structured CFD code CNS3D (Compressible Navier-Stokes

Solver in three-dimensions).9,21. The code solves the advec-

tive terms using the Godunov-type (upwind) method, whose

intercell numerical fluxes are calculated by solving the Rie-

mann problem using the reconstructed values of the primi-

tive variables at the cell interfaces. A one-dimensional swept

unidirectional stencil is used for spatial reconstruction. It in-

cludes high-resolution methods of up to 11th order of accuracy

in space and 4th order of accuracy in time.

CNS3D can be used to simulate turbulent flows using a

varied range of approaches, such as (i) Reynolds-Averaged

Navier-Stokes (RANS), (ii) implicit Large Eddy Simulations

(ILES), and (iii) Direct Numerical Simulations (DNS).9,21
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However, the focus of present simulations is on coarse-

grained ILES, which provides the best approach between ac-

curacy and computational cost for any engineering geome-

try. In classical Large Eddy Simulations (LES), the small-

est length scales, which are the most computationally ex-

pensive to resolve, are removed via low-pass filtering of the

Navier–Stokes equations. The unresolved scales of turbulence

are then modeled using subgrid-scale models. In ILES, the

computational grid filters the small, unresolved scales. The

modeling of the unresolved scales is then achieved implic-

itly through the nonlinear dissipation embedded in the high-

resolution, high-order numerical schemes used to discretize

the convective terms. There is a significant body of work

in the literature, both theoretical and numerical, explaining

ILES methods and demonstrating their accuracy in turbulent

flows.22

The present study uses the Harten–Lax–van Leer con-

tact (HLLC) approximate Riemann solver with a modified

11th-order weighted-essentially-non-oscillatory (WENO) re-

construction scheme.21,23 High-order WENO schemes have

proven resilient to the low-Mach number dissipation as-

sociated with compressible solvers24 in contrast to Mono-

tonic Upstream-centered Scheme for Conservation Laws

(MUSCL)25, which generally require a low-Mach number

treatment such as that proposed in the references.26 More-

over, the phase/component variables are reconstructed accord-

ing to27 to avoid spurious numerical oscillations from occur-

ring at interfaces between fluids of different heat capacity ra-

tios (γi ̸= γ j) due to the use of the four-equation model or

otherwise, the conservative mass-fraction transport equation

(Eq. (8) is considered a diffuse-interface method).19

Although the computational cost increases with the order

of the scheme for the same grid resolution, the computational

cost incurred by high-order methods is offset by the increase

in accuracy obtained.24 The above studies have shown that

lower-order methods require much finer grids to attain a sim-

ilar precision as high-order methods. Moreover, high-order

schemes scale more favorably over large numbers of cores and

nodes, further narrowing the difference in the apparent com-

putational expense.

A fourth-order central scheme is used for the viscous terms.

The solution is advanced in time using a five-stage (fourth-

order accurate) optimal strong-stability-preserving Runge–

Kutta method.28 Further details about the code can be found

in Refs.9,21 and references therein.

C. Data curation

The light-blue shaded regions are the AC unit inlets, push-

ing cold (∼18 °C) air in at 4 m/s with a relative humidity of

40% and an angle of 45° degrees outward (towards the room

walls). The total inlet mass-flux is (counter-) balanced by the

light-yellow shaded outlet located in the middle. The initial

room temperature is 25 °C with a 60% relative humidity.

Probes are positioned every half meter in the x direction and

every 40 centimetres in the y—and z directions for 728 probes.

The 13 positions in the x-direction are:

x(i) = [0.01, 0.5, 1.0, 1.5, 2.0, 2.5,

3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 5.99]T

the seven positions in the y-direction:

y( j) = [0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.39]T

and the eight positions in z-direction:

z(k) = [0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.79]T

Note that the ±0.01 meters at the start/end of the above coor-

dinate vectors are essentially the cell center locations of the

first computational cells from the room boundaries (walls).

During the 90 seconds of the simulated flow, air properties

were recorded at a regular interval at a sampling rate of al-

most ∼111 samples per second, or, in other words, a sampling

frequency of 111 Hz.

Figure 3 plots the temporal variation of the temperature and

relative humidity as measured at three probes. The three probe

locations were chosen due to their importance, which will be

discussed later in the present study.

Of the three probes, probe two is positioned closest to the

AC unit and, as a result, is affected not only the most (in terms

of changes in magnitude) but also the earliest. Moreover, the

magnitude of the oscillations indicates the much greater tur-

bulent state of the air currents in the room that are closer to

the AC unit outlets. By the end of the first 90 s, the air around

probe 2 is almost 1 °C cooler and approximately 1.5% drier.

Importantly, Fig. 3 clearly illustrates the significant differ-

ences in the air properties between different locations inside

the room –at least during the first minute and a half after the

AC is switched on, for the present room and AC configuration

considered.

III. CLUSTERING USING UNSUPERVISED LEARNING

A. Unsupervised Learning Method

Unsupervised learning (UL) represents a core paradigm in

machine learning that has remained consistently relevant in

a wide array of research fields and practical applications, in-

cluding image analysis29,30, sleep stage categorization31, and

detection of mechanical damage.32 Despite their versatility,

UL algorithms encounter specific obstacles in particle cluster-

ing tasks, such as sensitivity to hyperparameters, challenges

with feature selection and dimensionality, and limitations in

scalability, among other issues.17 As implemented in this

study, the RUN-ICON algorithm addresses these challenges

by enhancing confidence and minimizing uncertainty in se-

lecting dominant clusters.16

A notable advantage of RUN-ICON over other UL ap-

proaches lies in its systematic approach to identifying the opti-

mal number of clusters, reducing the need for intuitive or sub-

jective decision-making. Unlike other methods that rely on
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(a)

(c)

(b)

FIG. 3. Temperature (°C) and relative humidity (RH%) over time

as measured at three probe locations: (a) Probe 1: [x,y,z] =
[1.5, 0.8, 1.2] m, (b) Probe 2: [x,y,z] = [3.0, 1.2, 1.6] m, and (c)

Probe 3: [x,y,z] = [5.0, 1.2, 1.6] m.

subjective criteria to determine the best cluster count, RUN-

ICON establishes a structured process to select the optimal

cluster number, ensuring robust and repeatable results. The al-

gorithm identifies dominant cluster centers across multiple it-

erations of the K-means++ method without dependence on the

Sum of Squared Errors. It introduces novel metrics, namely

the Clustering Dominance Index (CDI) and Uncertainty. CDI

reflects the likelihood of a specific clustering pattern based

on its frequency across multiple attempts at a given cluster

count. Uncertainty is measured by the relative difference be-

tween the upper and lower CDI limits for a given configura-

tion, representing the maximum variance from the average for

that particular setup. The algorithm thus focuses on identify-

ing stable clusters that reveal the genuine structure within the

data, enhancing reliability by reducing the impact of outliers

or noise. This approach results in clustering outcomes that are

more robust and interpretable. The steps of the algorithm are

as follows:

1. Execute the K-means++ clustering algorithm 100 times

for a specified number of clusters in each iteration.

2. After each execution, determine the coordinates of the

cluster centers.

3. Compare the cluster center coordinates from all 100

runs to pinpoint those coordinates that occur most fre-

quently.

4. Select the cluster centers with the highest frequency as

the dominant centers for the specified number of clus-

ters and compute the CDI.

5. Repeat steps 1-4 nine additional times, resulting in ten

sets of dominant cluster centers.

6. Calculate the average frequency of occurrence and CDI

for these dominant centers over the ten repetitions, en-

suring consistency across clustering centers. Determine

the upper and lower bounds of these metrics and exam-

ine the variance.

7. Repeat steps 1-6 for different cluster counts, starting

from 3 and progressing up to 10 clusters.

8. Identify the cluster count with the highest average CDI

across all clustering attempts (from 3 to 10 clusters),

select the corresponding dominant cluster centers, and

ensure that the variance between the upper and lower

bounds remains below 30%.

9. Choose the cluster count with the highest average CDI

and minimal variance as the optimal number of clusters

for RUN-ICON.

The advantages of the RUN-ICON algorithm compared to

other UL techniques were demonstrated in a prior study.16

Its reliability and interpretability were validated across vari-

ous computational datasets where the intended clustering pat-

terns were predefined. The algorithm achieved approximately

97% accuracy in detecting the expected clusters, compared to
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(a)

(b)

FIG. 4. The Mickey Mouse dataset: (a) "face" and "ears", as gener-

ated in three circles with random points within every circle, (b) pre-

dicted dominant clustering by RUN-ICON algorithm. Each colour

indicates points belonging to the same cluster, and the stars indicate

the cluster centers.

80% accuracy from other methods. To offer another exam-

ple of the algorithm’s ability to identify dominant clusters, we

generated for the present study a dataset of 7,500 points in

(x, y) space, which represented the head of Mickey Mouse,

i.e, one central circle representing the “face” and two smaller

circles, symmetrically attached to the bigger one, represent-

ing the “ears”. All data points within the three circles were

generated randomly (Figure 4(a)). It is expected that RUN-

ICON should predict three dominant clusters, thus separating

the “face” from the “ears”. Indeed, the algorithm predicted as

dominant the separation in three clusters, as shown in Fig-

ure 4(b), with high confidence (97%) and low uncertainty

(2%). The two smaller clusters resemble Mickey’s “ears”,

positioned symmetrically above the larger central cluster that

forms the “face”. All other clustering configurations were pre-

dicted with confidence less than 40%.

Additionally, RUN-ICON was tested on mathematically

simulated particle dispersions17, where particles were ran-

domly distributed in space. RUN-ICON identified dominant

clustering structures, unlike other UL techniques, which failed

to do so. Furthermore, the combination of CFD and RUN-

ICON either independently33 or in conjunction with Gaus-

sian Mixture Models13, showcased the capabilities of the al-

gorithm to identify meaningful particle clusters effectively.

These successes highlight the algorithm’s potential for appli-

cation in complex flow scenarios and realistic contexts.

IV. ANALYSIS OF TEMPORAL FLOW DYNAMICS IN A
CONTROLLED ROOM ENVIRONMENT

This work aims to identify distinct comfort zones within a

room by applying the RUN-ICON algorithm for the flow de-

scribed in Section II, driven by variations in temperature, hu-

midity, and airflow patterns. By categorizing regions based on

similar flow characteristics, we can define representative clus-

ters that reflect different comfort levels experienced within

the space. This clustering approach highlights specific com-

fort zones and helps pinpoint optimal, representative loca-

tions for future measurements. These identified positions will

serve as reference points for similar studies in other rooms,

enabling efficient and targeted data collection without need-

ing to instrument each room extensively. This streamlined

method provides a transferable framework for assessing com-

fort zones and air distribution in diverse indoor environments.

A. Data Pre-processing and Derived Metrics

We utilize computational data from 728 location probes

throughout the room, recording measurements of the x, y, and

z components of velocity and temperature and relative humid-

ity. We analyze them at three key time points (40, 60, and

90 seconds). These time points capture instances as the tur-

bulent flow evolves, influenced by the introduced cooler air.

This setup enables a detailed examination of how air move-

ment and parameter distributions change over time.

To distill the complexity of the collected data, we focus,

apart from temperature and relative humidity, on two derived

parameters that serve as robust indicators of flow structure and

similarity across regions. The first parameter is the Euclidean

distance (L2 norm) from the room’s origin (bottom left inner

corner, as shown in Figure 1), which represents spatial prox-

imity and allows us to account for potential regions of influ-

ence from the air conditioning source. This parameter pro-

vides a measure of spatial grouping critical for understanding

how regions relate based on distance, potentially sharing sim-

ilar flow characteristics.

The second parameter is the magnitude of the velocity vec-

tor, calculated from the x, y, and z velocity components. This

measure serves as an indicator of the local intensity of air-

flow. By analyzing velocity magnitudes, we gain insights into

higher and lower air momentum zones, which often reflect

the degree of turbulence in different regions. The L2 norm of

distances and the velocity magnitudes offer complementary

perspectives for delineating distinct regions within the room,

potentially enabling the categorization of flow areas with UL

based on spatial and dynamic flow attributes.
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These four chosen parameters allow for a focused, inter-

pretable analysis. They contribute to a better understanding

the underlying flow structure and enable meaningful catego-

rization of flow regions influenced by the air conditioning dy-

namics and room geometry.

B. Statistical Analysis of Flow Variables

The Spearman rank correlation was calculated to analyze

relationships between the four chosen variables (namely, L2

norm, velocity magnitude, temperature and relative humid-

ity) within the flow data and its corresponding p-value for the

three-time points. The Spearman rank correlation r is a non-

parametric measure that assesses the strength and direction of

a monotonic relationship between two variables, regardless of

the distribution or linearity of the data.34 Spearman’s correla-

tion coefficient ranges from -1 to +1, where values close to +1

or -1 indicate a strong positive or negative association, respec-

tively, and values near zero suggest no monotonic relation-

ship. The p-value associated with each Spearman correlation

quantifies the probability that the observed correlation could

occur by random chance. A low p-value (typically below

0.05) indicates a statistically significant relationship, suggest-

ing that the correlation is unlikely due to random variation and

that there is a meaningful association between the variables

analyzed.35 This approach provides insight into variable in-

terdependencies within the flow regions, guiding further anal-

ysis and interpretation of comfort zones. In Tables I-VI, the

Spearman rank correlation matrices and their corresponding

p-value matrices for the L2 norm D, velocity v, temperature T

and relative humidity RH at 40 s, 60 s and 90 s are presented:

TABLE I. Spearman Rank Correlation Matrix at 40 s for L2 norm,

velocity, temperature and relative humidity.

D v T RH

D 1.000 -0.030 -0.007 0.011

v -0.030 1.000 -0.431 -0.432

T -0.007 -0.431 1.000 0.978

RH 0.011 -0.432 0.978 1.000

TABLE II. p-values Matrix at 40 s for L2 norm, velocity, temperature

and relative humidity.

D v T RH

D 0.000 0.413 0.852 0.763

v 0.413 0.000 0.000 0.000

T 0.852 0.000 0.000 0.000

RH 0.763 0.000 0.000 0.000

Next, we discuss the key observations and interpret the cor-

relations while considering the impact of the air conditioning

unit’s operation.

TABLE III. Spearman Rank Correlation Matrix at 60 s for L2 norm,

velocity, temperature and relative humidity.

D v T RH

D 1.000 -0.079 0.135 0.138

v -0.079 1.000 -0.463 -0.452

T 0.135 -0.463 1.000 0.991

RH 0.138 -0.452 0.991 1.000

TABLE IV. p-values Matrix at 60 s for L2 norm, velocity, tempera-

ture and relative humidity.

D v T RH

D 0.000 0.034 0.000 0.000

v 0.034 0.000 0.000 0.000

T 0.000 0.000 0.000 0.000

RH 0.000 0.000 0.000 0.000

TABLE V. Spearman Rank Correlation Matrix at 90 s for L2 norm,

velocity, temperature and relative humidity.

D v T RH

D 1.000 -0.031 0.073 0.077

v -0.031 1.000 -0.436 -0.430

T 0.073 -0.436 1.000 0.992

RH 0.077 -0.430 0.992 1.000

TABLE VI. p-values Matrix at 90 s for L2 norm, velocity, tempera-

ture and relative humidity.

D v T RH

D 0.000 0.406 0.048 0.039

v 0.406 0.000 0.000 0.000

T 0.048 0.000 0.000 0.000

RH 0.039 0.000 0.000 0.000

1. Correlation Between Temperature and Relative Humidity

In all time instances (40s, 60s, and 90s), there is a consis-

tently high positive correlation between temperature and rel-

ative humidity with strong statistical significance. At 40 s,

r = 0.978 with p = 0.000; At 60 s, r = 0.991 with p = 0.000;

At 90 s, r = 0.992 with p = 0.000. This strong correlation is

expected because temperature and humidity are often interre-

lated in a controlled environment. Initially, both temperature

and humidity were higher in the room, likely due to external

environmental factors and the room’s insulation properties.

As the air conditioner begins to function, it simultaneously

reduces the temperature and relative humidity. The positive

correlation between T and RH suggests that the cooling and

drying effects of the air conditioner are occurring in tandem,

maintaining a relationship between the two variables. Cooler

air holds less moisture, resulting in a drop in temperature and

humidity, reinforcing the close relationship between these two

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
5
1
7
4
9



8

variables.

2. Negative Correlation Between Velocity and
Temperature/Relative Humidity

Another notable pattern in the matrices is the consistent

negative correlation between velocity (v), temperature (T ),

and relative humidity (RH), again with strong statistical sig-

nificance. At 40 s, the correlations are r =−0.431 for T with

p = 0.000, and r = −0.432 for RH with p = 0.000. At 60

s, the correlations are r = −0.463 for T with p = 0.000, and

r = −0.452 for RH with p = 0.000. At 90 s, the correlations

are r = −0.436 for T with p = 0.000, and r = −0.430 for

RH with p = 0.000. This negative correlation reflects that the

HVAC introduces air at a higher velocity than the room’s ini-

tial, relatively stagnant conditions. The incoming conditioned

air is colder and drier than the existing room air. This nega-

tive correlation suggests that regions of the room experiencing

higher air velocity are closer to the cooling source, where the

air conditioner’s actions have significantly reduced the tem-

perature and humidity.

3. Distance and Flow Dynamics

The matrices also show relatively weak correlations be-

tween distance parameter D and velocity v, temperature T

or humidity RH. At 40 s for v, T, and RH, r = −0.030,

r = −0.007, and r = 0.011 respectively, with corresponding

p-values of 0.413, 0.852, and 0.763. At 60 s, D has corre-

lations of r = −0.079 with v (p = 0.034), r = 0.135 with T

(p = 0.000), and r = 0.138 with RH (p = 0.000). At 90 s,

D shows correlations of r = −0.031 with v (p = 0.406), r =
0.073 with T (p= 0.048), and r = 0.077 with RH (p= 0.039).

The small correlations between distance and velocity, temper-

ature or humidity suggest that, over time, the spatial distri-

bution of velocity, temperature and humidity in the room is

becoming more uniform. In the initial moments, the air con-

ditioner’s effect is most pronounced near the source of condi-

tioned air (closer to the AC unit), leading to a more noticeable

difference in velocity, temperature and humidity at various

distances. Over time, however, the air becomes more evenly

distributed across the room, reducing their gradient with re-

spect to distance.

The strong positive correlation between temperature and

relative humidity at all time steps highlights the interdepen-

dent nature of these two variables in a room subjected to air

conditioning. The consistently negative correlation between

velocity and temperature and relative humidity reflects the

role of the air conditioner in displacing warmer, moister air

with cooler, drier air. These findings align with the expected

physical behavior of the system. As higher-velocity air enters

the room, it lowers both temperature and humidity, creating

gradients that are eventually smoothed out over time as the

room reaches a more uniform state.

C. Cluster-Based Analysis for Optimal Probe Placement

The study aims to identify areas in the room with similar

temperature and velocity patterns, allowing monitoring with

fewer probes. Clustering was carried out using the RUN-

ICON algorithm, focusing on temperature and velocity rela-

tive to distance while excluding relative humidity because it

heavily depends on temperature. The goal is to demonstrate

that the dominant clusters share similar distances from the ori-

gin (measured by the L2 norm) across equivalent spatial posi-

tions in all cases. For this reason, a radius of influence for

each cluster center is determined by calculating the standard

deviation of the spatial coordinates. This allows us to ver-

ify that the corresponding predicted centers fall within each

other’s radius of influence. As demonstrated, by limiting spa-

tial representation to the L2 norm of distances, clustering reli-

ability increased, achieving 70-90% confidence levels across

clusters.

Since predicted clusters have clear spatial boundaries, non-

linear programming can determine the exact x, y, and z coor-

dinates for flow monitoring at these locations. For this rea-

son, the Sequential Least Squares Programming (SLSQP) al-

gorithm was employed to convert the L2 norms back to x, y,

and z coordinates, constrained by each cluster’s spatial range

through the formulation of an objective function from the

equality:

x2 + y2 + z2 = L2
2 (10)

SLSQP is an iterative optimization algorithm commonly used

for solving constrained optimization problems36. It can han-

dle both linear and non-linear constraints and bounds on vari-

ables. SLSQP operates by approximating the original prob-

lem as a series of quadratic programming subproblems and

sequentially improves the solution’s estimate using first-order

derivatives of the objective function and constraints. This

makes it a robust and efficient method for handling non-linear

programming problems.

D. Results

The clustering analysis provided insights into the room’s

spatial and thermal dynamics at different times, influencing

probe placement recommendations.

1. Time: 40 seconds

Temperature-distance and velocity-distance clustering re-

vealed three distinct zones (see Fig. 5) with (confidence, un-

certainty): (62.6%, 15%) and (97%, 2%), respectively. The

three clusters are denoted by the indices (1, 2, 3), correspond-

ing to the room’s left, middle, and right sections, respectively,

as illustrated in Fig. 1. The radii of influence (i.e., the standard

deviation, in m) for the three clusters (1, 2, 3) were (0.65, 0.52,

0.57) and (0.64, 0.51, 0.58), respectively. Using SLSQP op-

timization, cluster positions were calculated within each clus-

ter. The constraints in x, y, and z are the same for temperature
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(a)

(b)

FIG. 5. Clustering at time 40 s from the start of the simulation. The

x-axis is the distance from the origin (L2 norm) in m, and the y-axis

is either (a) Temperature (in °C) or (b) Velocity (in m/s). Each color

indicates points of the room belonging to the same cluster and the

stars indicate the cluster centers.

and velocity. They only differ in x, based on the cluster po-

sition, whether closer to the side walls or the center of the

room. In this way, the constraints in the x-direction are given

in Table VII, while the constraints in y and z are given in Ta-

ble VIII. The objective functions for temperature and velocity

result from Eq. (10) with L2 as recorded in Table IX.

TABLE VII. Constraints in the x-direction for the three dominant

clusters at 40 sec.

Cluster Lower bound (m) Upper bound (m)

1 0.5 2.9

2 2.5 4.5

3 3.1 5.5

In this way, we obtain the optimal cluster coordinates for

TABLE VIII. Constraints in the y- and z-directions for the three dom-

inant clusters at 40 sec.

Axis Lower bound (m) Upper bound (m)

y 0.0 2.4

z 0.0 2.8

TABLE IX. L2 values for the three dominant clusters at 40 sec.

Cluster L2 for temperature L2 for velocity

1 2.17 2.12

2 3.86 3.76

3 5.72 5.66

temperature as: cluster 1 (x,y,z) = (1.59, 0.96, 1.12) m, clus-

ter 2 (x,y,z) = (3.28, 1.31, 1.53) m, and cluster 3 (x,y,z) =
(5.42, 1.18, 1.38) m. Similarly, the optimal cluster coor-

dinates for velocity are predicted as: cluster 1 (x,y,z) =
(1.56, 0.94, 1.09) m, cluster 2 (x,y,z) = (3.22, 1.29, 1.50) m,

and cluster 3 (x,y,z) = (5.37, 1.17, 1.37) m.

2. Time: 60 seconds

Temperature-distance clustering revealed, as before, three

distinct zones (see Fig. 6(a)) with (confidence, uncertainty):

(75%, 6%). At this time, velocity-distance clustering revealed

an additional cluster, likely resulting from localized turbu-

lence, which divided the central region of the room into two

distinct areas, as shown in Fig. 6(b). The confidence and

uncertainty for this clustering were (87%, 7%). However,

the minor central cluster, characterized by higher velocities,

contained only 17 points compared to the major central clus-

ter’s 255 points. Consequently, given the high confidence and

low uncertainty associated with separating into three domi-

nant clusters (73%, 14%), the minor cluster was disregarded

for simplicity, and its points were merged into the major cen-

tral cluster. The radii of influence for the three clusters (from

left to right, as seen in Fig. 6) were (0.66, 0.49, 0.61) m and

(0.62, 0.53, 0.57) m, for temperature and velocity, respec-

tively. Using SLSQP optimization, cluster positions were cal-

culated within each cluster. The constraints in x, y, and z are

the same as in the 40 s case. The objective functions differ

due to the distances predicted for the cluster centers’ loca-

tions. The objective functions for temperature and velocity

result from Eq. (10) with L2 as recorded in Table X.

In this way, we obtain the optimal cluster coordinates for

TABLE X. L2 values for the three dominant clusters at 60 s.

Cluster L2 for temperature L2 for velocity

1 2.19 2.08

2 3.80 3.71

3 5.63 5.64
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(a)

(b)

FIG. 6. Clustering at time 60 s from the start of the simulation. The

x-axis is the distance from the origin (L2 norm) in m, and the y-axis

is either (a) Temperature (in °C) or (b) Velocity (in m/s). Each color

indicates points of the room belonging to the same cluster and the

stars indicate the cluster centers.

temperature as cluster 1 (x,y,z) = (1.69, 0.81, 0.95) m, clus-

ter 2 (x,y,z) = (3.06, 1.47, 1.71) m, and cluster 3 (x,y,z) =
(4.88, 1.17, 1.37) m. Similarly, the optimal cluster coor-

dinates for velocity are predicted as cluster 1 (x,y,z) =
(1.54, 0.93, 1.08) m, cluster 2 (x,y,z) = (3.15, 1.26, 1.47) m,

and cluster 3 (x,y,z) = (5.25, 1.26, 1.47) m.

3. Time: 90 seconds

Higher confidence (82% for temperature and 97% for ve-

locity) and lower uncertainty levels (9% for temperature and

2% for velocity) validated the clustering results, establishing

three optimal clusters, consistent with the earlier clustering re-

sults (see Fig. 7). The radii of influence (in m) for the three

clusters (from left to right, as seen in Fig. 7) were (0.64, 0.51,

(a)

(b)

FIG. 7. Clustering at time 90 s from the start of the simulation. The

x-axis is the distance from the origin (L2 norm) in m, and the y-axis

is either (a) Temperature (in °C) or (b) Velocity (in m/s). Each color

indicates points of the room belonging to the same cluster and the

stars indicate the cluster centers.

0.58) and (0.63, 0.52, 0.55) for temperature and velocity, re-

spectively. Using SLSQP optimization, cluster positions were

calculated within each cluster. The constraints in x, y, and z

are the same as in the 40 and 60 s case. Only the objective

functions differ due to the different distances predicted for the

cluster center’s location. The objective functions for temper-

ature and velocity result from Eq.( 10) with L2 as recorded in

Table XI.

TABLE XI. L2 values for the three dominant clusters at 90 s.

Cluster L2 for temperature L2 for velocity

1 2.18 2.20

2 3.80 3.83

3 5.65 5.67
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In this way, we obtain the optimal cluster coordinates for

temperature as: cluster 1 (x,y,z) = (1.54, 0.93, 1.08) m, clus-

ter 2 (x,y,z) = (3.00, 1.52, 1.77) m, and cluster 3 (x,y,z) =
(5.25, 1.26, 1.47) m. Similarly, the optimal cluster coor-

dinates for velocity are predicted as: cluster 1 (x,y,z) =
(1.55, 0.92, 1.08) m, cluster 2 (x,y,z) = (3.24, 1.29, 1.51) m,

and cluster 3 (x,y,z) = (5.26, 1.26, 1.47) m.

4. Probe group clustering identification

We identified three distinct locations within the room that

can adequately characterize the airflow around the air condi-

tioning unit and help define comfort zones. These locations

were determined based on their ability to represent the flow

regions at 40 s, 60 s, and 90 s after allowing sufficient time for

turbulence to develop (90 s). Table XII gives the minimum-

maximum values from the above analyses for each coordinate

(x, y, z) and a radius of influence. The radii of influence were

calculated as the mean of all standard deviations for tempera-

ture and velocity for each cluster center.

TABLE XII. Main cluster location bounds and radii of influence

Cluster x (m) y (m) z (m) radius of influence (m)

1 1.54–1.69 0.81–0.96 0.95–1.12 0.62

2 3.00–3.28 1.26–1.52 1.47–1.77 0.52

3 4.88–5.42 1.17–1.26 1.37–1.47 0.58

The maximum and minimum coordinates shown in Ta-

ble XII represent the intervals within which the clusters may

be identified. Notably, these intervals all fall within the calcu-

lated radius of influence for their corresponding cluster cen-

ter. This confirms the stability and reliability of the predicted

locations as representative points for both temperature and ve-

locity distributions. In this way, we may select the mean val-

ues for each location’s coordinates as representative positions.

For the given room dimensions, these are given in Table XIII.

Figure 8 illustrates the main clusters’ positions as centers of

spheres with radii equal to the corresponding radii of influ-

ence, as given in Table XII.

TABLE XIII. Main cluster locations

Location x (m) y (m) z (m)

1 1.58 0.92 1.10

2 3.16 1.36 1.58

3 5.24 1.22 1.42

In our data, the closest probe positions corresponding to

these locations are given in Table XIV.

These selected positions provide an effective and simpli-

fied representation of airflow within the room, particularly for

defining comfort zones under the influence of the air condi-

tioning unit.

z

x

Top-down

view

Top-down

view

Side view

Side view

y

z

x

y

x

FIG. 8. Illustration of the three clusters’ positions as centers of

spheres with radii equal to the corresponding radii of influence. Clus-

ter 1: green coloured, Cluster 2: blue coloured, and Cluster 3: pink

coloured shapes.

TABLE XIV. Closest probe positions

Probe positions x (m) y (m) z (m)

1 1.5 0.8 1.2

2 3,0 1.2 1.6

3 5.0 1.2 1.6

E. Turbulence analysis at probe positions

At the identified probe points, turbulent characteristics were

evaluated through Reynolds number, Re, and Turbulence In-

tensity, T I. The velocity magnitude time series, from 0 to 90 s,

was retrieved from the data set for each of the three probes.

Using these velocity data, the mean and standard deviation

were determined. Then, Re and T I were are calculated as
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follows37:

Re = ρ ūL/µ (11)

where ρ = 1.2 kg/m3 is the density of air; ū is the mean of the

velocity magnitude (m/s); L = 3 m is the characteristic length,

chosen as half the x-dimension of the room (comparable to

the room’s height and width); µ = 1.81 × 10−5 Pa·s is the

dynamic viscosity of the air.

The turbulence intensity, T I, can be obtained –in terms of

percentage– according to:

T I = σ/ū×100 (12)

where σ is the standard deviation of the velocity (m/s).

The analysis revealed distinct flow characteristics at each

probe location: (i) The left side of the room: The Reynolds

number found is Re = 40,375, with a turbulence intensity of

T I = 58%; (ii) The right side of the room: The Reynolds num-

ber is Re = 28,492, with a turbulence intensity of T I = 54%;

and (iii) Intermediate region, near the air conditioner: The

Reynolds number is much higher at Re = 70,460, while the

turbulence intensity is slightly lower at T I = 47%. These

results indicate varying flow characteristics across the room.

On the left side, the higher turbulence intensity reflects more

pronounced velocity fluctuations. The Reynolds number and

turbulence intensity are lower on the right side, suggesting a

more stable flow. The flow exhibits a much higher Reynolds

number in the intermediate region, driven by increased veloc-

ities, indicating the dominance of inertial forces over viscous

forces. Despite this, the lower turbulence intensity suggests

reduced velocity fluctuations, marking a transition towards

laminar behavior and smoother flow.

F. Discussion

The findings from this study offer significant insights into

probe placement optimization within an air-conditioned envi-

ronment where turbulent airflow is modelled. By applying

clustering techniques and CFD simulations, we could map

the room’s temperature, humidity, and velocity distributions,

identifying regions with distinct thermal and flow characteris-

tics. This section explores the practical implications of these

results, the effectiveness of the methodology, and potential av-

enues for further research and application.

The study demonstrates that airflow in an enclosed room

environment, especially one with centrally located air con-

ditioning, does not distribute uniformly. Instead, due to the

turbulent flow generated by the temperature and velocity dif-

ferential of the incoming air, pockets of varying temperature

and velocity develop within the space. For HVAC system

design, this information is essential, as it highlights the non-

uniform cooling distribution and potential zones where addi-

tional airflow control may be necessary to maintain occupant

comfort. A significant outcome is the relationship between

the Reynolds number and Turbulence Intensity at the selected

probe locations. Higher Re values near the air-conditioning

outlet indicate strong, inertial-dominated airflow with lower

T I, suggesting that air in these zones is less affected by vis-

cous forces and maintains a stable, directional flow. Such ar-

eas offer a smoother and more consistent airflow, which gen-

erally translates to higher thermal comfort for occupants. On

the other hand, lower Re values and higher T I levels were

recorded closer to the room’s boundaries, where airflow is

more disrupted. This suggests that edge areas of the room

might experience drafts or fluctuating air speeds, potentially

causing discomfort. For HVAC systems, understanding these

distinctions in airflow behavior can be pivotal in develop-

ing strategies that mitigate uncomfortable drafts and optimize

cooling patterns.

The RUN-ICON clustering approach applied in this study

proved effective in identifying probe positions that adequately

capture the spatial and thermal variations within the room. By

categorizing regions based on temperature-velocity profiles,

the clustering approach reduced the number of probes needed

while allowing comprehensive data collection across the en-

tire space. Notably, using the L2 norm effectively reduced

spatial dimensionality and focused on meaningful positional

relationships relative to the room’s origin. Sequential Least

Squares Programming (SLSQP) for determining probe coor-

dinates within each cluster further contributed to the optimiza-

tion by aligning probe placement with calculated cluster cen-

ters while maintaining a margin of uncertainty around each

probe position. This refinement ensures that the selected posi-

tions provide adequate coverage and account for spatial vari-

ability within each cluster, which is vital in turbulent flow con-

ditions. This clustering-based approach to probe placement

has practical implications for various fields beyond HVAC.

In industrial settings, for example, where monitoring airflow,

temperature, or humidity is crucial, optimized probe place-

ment can reduce installation and maintenance costs by focus-

ing probes on key areas. The methodology applied here also

holds potential for environments where space constraints limit

the number of probes that can be installed, as it provides a ro-

bust, data-driven method for choosing probe locations with

maximum efficiency.

RUN-ICON ensures robustness by iteratively identifying

stable clusters and employing novel metrics such as the Clus-

tering Dominance Index (CDI) and Uncertainty to evaluate

the consistency of clustering outcomes. These features mini-

mize the impact of noise and outliers while maintaining reli-

able performance across diverse scenarios. Furthermore, the

integration of CFD simulations enhances the robustness of the

methodology by providing high-fidelity data that capture the

intricate dynamics of turbulent airflow. The high accuracy

of the algorithm has been demonstrated in previous works,

where the algorithm was compared to other UL methods and

metrics.16,17

Interpretability is a key strength of this approach. RUN-

ICON aligns clustering outcomes with fundamental physics

by focusing on physically meaningful variables, such as ve-

locity, temperature, and spatial proximity. This alignment al-

lows clear insights into airflow patterns, facilitating the op-

timization of probe placements. Additionally, the structured

outputs of the clustering algorithm, including confidence in-

tervals and cluster boundaries, enhance its accessibility for
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engineering applications.

The scalability of this methodology is demonstrated not

only in its ability to handle large datasets, such as those from

728 probes but also in its adaptability to spaces of different

dimensions. Table XV provides a general formula for scal-

ing the positions of the three identified cluster centers based

on room dimensions. Using this proportional approach, we

demonstrate its application to a new room with dimensions of

10.0 m×3.0 m×4.0 m in the example following the table.

TABLE XV. Generic formula for scaling cluster positions based on

room dimensions.

Probe positions x (m) y (m) z (m)

1 1.58
6.0 ×Length 0.92

2.4 ×Height 1.10
2.8 ×Width

2 3.16
6.0 ×Length 1.36

2.4 ×Height 1.58
2.8 ×Width

3 5.24
6.0 ×Length 1.22

2.4 ×Height 1.42
2.8 ×Width

For a room measuring (x,y,z) = (10.0, 3.0, 4.0 ) m, the

scaled positions of the three probes are calculated as: probe

1 (x,y,z)=(2.63, 1.15, 1.57) m, probe 2 (x,y,z)= (5.27, 1.70,

2.26) m, probe 3 (x,y,z)= (8.72, 1.53, 2.03) m.

To further validate the scalability of the proposed methodol-

ogy, future work will focus on testing these proportional clus-

ter placements in rooms of various dimensions and configu-

rations. These tests will help determine whether the scaled

positions reliably capture airflow and thermal characteristics

in different settings, ensuring the robustness and versatility of

the approach for real-world applications.

While the clustering and optimization techniques applied

here demonstrate significant potential, we may identify ar-

eas where further consideration should be given. Firstly, this

study assumes a static setup of the air-conditioning unit and

room boundaries. In real-world scenarios, factors such as oc-

cupant movement, furniture placement, and other obstructions

can alter airflow patterns, affecting temperature and velocity

distributions. Future studies could incorporate dynamic fac-

tors or real-time adjustments to the clustering analysis based

on updated flow data, potentially making the probe placement

even more responsive to environmental changes. Addition-

ally, although the CFD simulations provide a high-fidelity rep-

resentation of turbulent flow, certain assumptions —such as

uniform air properties and idealized boundary conditions—

may differ from actual conditions. Including a broader range

of boundary conditions or using experimental validation with

simulations could further refine these findings. Lastly, al-

though excluding relative humidity (RH) from the clustering

criteria was justified due to its correlation with temperature,

there may be situations where RH changes independently of

temperature (e.g., in humid or damp environments). Future

work could explore how additional environmental factors im-

pact clustering confidence and probe placement recommenda-

tions.

V. CONCLUSIONS

This study presents an innovative approach for optimizing

probe placement in air-conditioned spaces by integrating com-

putational fluid dynamics (CFD) simulations with the RUN-

ICON clustering algorithm. The method involves clustering

distinct thermal and velocity zones and strategically position-

ing probes based on temperature and velocity distributions.

This strategy minimizes redundancy and maximizes spatial

coverage, offering a practical solution for monitoring indoor

environments where airflow and temperature control are crit-

ical, particularly in HVAC systems that enhance occupant

comfort and energy efficiency.

The findings reveal the non-uniform nature of airflow in

enclosed spaces, influenced by turbulent flow patterns and

thermal gradients. Higher Reynolds numbers (Re) near air-

conditioning outlets are associated with stable airflow and low

turbulence intensity (TI), favoring thermal comfort. In con-

trast, lower Re and higher TI near boundaries can disrupt air-

flow, potentially causing drafts and discomfort. These insights

are crucial for HVAC design, enabling engineers to target spe-

cific airflow characteristics, such as maintaining high Re in

seating areas for stability and minimizing high TI near occu-

pants to reduce drafts, enhancing comfort and efficiency.

The study’s optimized probe placements provide a frame-

work for efficient environmental monitoring, reducing the

probes needed while maintaining comprehensive data collec-

tion. Using the L2 norm and Sequential Least Squares Pro-

gramming facilitated the precise alignment of probes with

cluster centers, accounting for spatial variability. These ad-

vancements can cut costs and improve maintenance efficiency

in HVAC systems. Beyond HVAC, the methodology can be

applied in industrial settings, allowing effective monitoring

of temperature, velocity, and humidity with fewer resources.

Further research incorporating dynamic factors, real-time val-

idation, and the inclusion of relative humidity (RH) could re-

fine the approach, expanding its applicability to various en-

vironmental conditions and enhancing its responsiveness to

real-world scenarios.
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VIII. DATA AVAILABILITY

The authors’ data supporting this study’s findings are

available upon reasonable request. The RUN-ICON algo-

rithm in Python is freely available at https://github.com/ASI-

UNIC/RUN-ICON/
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