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This study presents a novel methodology for optimizing probe placement in indoor air-conditioned environments by
integrating computational fluid dynamics simulations with artificial intelligence techniques in an unsupervised learn-
ing framework. The "Reduce Uncertainty and Increase Confidence’ algorithm identified spatially distinct thermal and
velocity clusters based on temperature and velocity magnitude distributions. Optimization of probe positions within
these clusters, guided by sequential least squares programming, resulted in an effective strategy to minimize probe re-
dundancy while maximizing spatial coverage. The methodology highlights the interplay between temperature, relative
humidity, velocity, and turbulence intensity, revealing critical insights into airflow behavior and its implications for
occupant comfort. The findings of the presented study underscore the potential for targeted probe placement to provide

a robust framework for advanced indoor climate control.

I. INTRODUCTION

Indoor thermal comfort significantly influences human
health, productivity, and living standards. Modern buildings
utilize Heating, Ventilation, and Air Conditioning (HVAC)
systems to maintain thermal comfort."” Various studies have
explored how ventilation affects indoor thermal comfort us-
ing methods like sensor technology, yet these can be time-
consuming or costly.” Experimental methods have been used,*
but require substantial time and resources, presenting a chal-
lenge when multiple scenarios must be evaluated.

Computational models have been utilized to predict thermal
comfort indoors.™ Yet, these models often face challenges
due to computational costs and the intricate nature of turbu-
lent flows, which encompasses uncertainties inherent in tur-
bulent dynamics and the logistical complexity of large-scale
measurements and computations.’”

Artificial Intelligence (AI) provides a robust framework
for uncovering hidden structures within noisy and incom-
plete data sets.'’. In particular, unsupervised learning (UL)
has demonstrated exceptional potential in tackling complex
scientific problems, especially in the grouping and classify-
ing of data sets. Applications of UL span diverse fields, in-
cluding unravelling genetic complexities'!, advancing natural
language processing'”, particle dynamics'®, and astronomical
phenomena.'*

One of the key advantages of UL is its ability to analyze
unlabeled data, such as experimental observations, computa-
tional outputs, or field measurements, with minimal human
intervention. This feature is especially critical in areas where
the underlying physics is not yet fully understood.'>'® Apply-
ing UL in engineering, physics, and biomedical sciences of-
ten encounters higher levels of uncertainty, given the intricate
and poorly understood physical processes involved.'” Unlike
general data in marketing or economics, clustering and pre-
diction in fluid mechanics and engineering, in general, must
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align with physical principles and remain explainable. Re-
cent advances in UL algorithms, such as the Reduce UNcer-
tainty and Increase CONfidence (RUN-ICON) algorithm'®,
have demonstrated increased effectiveness in clustering and
identifying regions of interest in datasets with high complex-
ity.

This study aims to integrate CFD simulations with UL to
explore comfort zones in a room where an HVAC supplies
colder air at lower temperature and relative humidity, and the
evolution of parameters, such as air velocity, temperature, and
relative humidity, is recorded at 728 locations in the room.
The study is structured into the following stages: (i) Data
preprocessing: Trends and correlations in velocity, temper-
ature, and relative humidity data obtained by computational
fluid dynamics (CFD) are identified after the turbulent flow
has evolved for some time. (ii) Clustering using RUN-ICON:
Later flow stages are analyzed to uncover dominant clusters
corresponding to flow regions of interest. (iii) Non-linear
programming: Key spatial coordinates representing comfort
zones are determined, leveraging optimization techniques to
refine the accuracy of the clustering results. (iv) Turbulence
analysis: Detailed studies of turbulence characteristics are car-
ried out in these locations to understand their role in comfort
and airflow dynamics.

This research highlights the potential benefits of integrat-
ing Unsupervised Learning (UL) with Computational Fluid
Dynamics (CFD) to overcome challenges in designing effi-
cient HVAC systems for turbulent indoor environments. The
study offers practical strategies to enhance indoor air quality
and thermal comfort, setting the stage for more efficient and
adaptable air conditioning designs.

In Section II, we introduce the issue of identifying comfort
zones in air-conditioned spaces, including a detailed explana-
tion of the data collection process facilitated by CFD model-
ing. Section I1I provides an overview of the RUN-ICON algo-
rithm, while Section I'V presents the clustering and turbulence
analysis results using non-linear programming techniques.

Finally, Section V summarizes the study’s key findings
and proposes future directions for integrating Artificial Intelli-
gence (AI) with CFD to advance HVAC system design further.
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Il.  FLOW AND ENVIRONMENTAL DATA INDOORS

The temperature of a closed rectangular room, measuring
6.0 x 2.4 x 2.8 meters (length x height x width), is controlled
by an air conditioning (AC) unit. The unit is placed in the
center of the ceiling and comprises a square outlet (48 cm?)
and four smaller rectangular shaped inlets (48 x 4 cm? each)
that eject cold air at 18 °C at a 45°degree angle relative to
the ceiling plane centerline. Figure | illustrates the flowfield
that develops in the rectangular room — about 1 minute after
the AC unit is turned on. Typically, in suddenly expanded
flow, an effective diameter can be estimated such that the area
of the circle is equal to that of the rectangular plane. Thus,
based on the AC inlet(s) effective diameter and the velocity of
the ejected cold air (4 m/s), the inlet Reynolds number is just
above Re; ~40,000. Figure 2 provides further information on
the position and dimension of the commercial four-way square
cassette AC unit considered that is commonly encountered.

The initial room temperature is 25 °C with a 60% relative
humidity. The simulation considers a binary multi-component
flow. The first component is dry air (0% moisture) with an adi-
abatic index of y;, = 7/5 and molar mass of .Z;, = 28.964
kg/kmol. The second component is water vapor with an adi-
abatic index of %,, = 4/3 and molar mass of .#,,, = 18.015
kg/kmol. The velocity is initially assumed to be equal to zero
everywhere in the room. The pressure varies in the normal (y)
direction due to gravity, i.e.,

() = Po+Pmgyy s (1)

where the Earth’s gravitational acceleration is taken as g, =
—9.81 m/s>. The internal energy, e; is calculated according
to:

€ = (pda +Pwv)/('y_ 1) 2

where py, is the room pressure of the dry air component and
Pwy 18 the water vapor pressure. The former is obtained ac-
cording to py, = po — pwy, Where py is taken here as the stag-
nation pressure at ground/sea level, i.e., po = 101,325 Pa. The
water vapor pressure is calculated according to p,,, = Xy po,
where the molar-fraction is x,,, = wyy, (& /M), and the to-
tal molar mass of a miscible mixture is obtained according to:

1
M= —— 3)
Y (wi/ A7)
where w; is the mass-fraction of the i-th component. The
initial air mixture density, p,,, is taken to be constant and is
calculated based on the prescribed relative humidity, i.e., the
fraction of water vapour and dry air:

Pm = Pda+ Pwv (C]

where the individual component density is calculated from
pi = pi/ (R To). Here, R! is the specific gas constant of the
i-th component, while Tj is the initial (stagnation) room tem-
perature.

A block-structured hexahedral orthogonal Cartesian mesh
is employed. The computational cells have an edge length

of 2 cm (Ax™ ~ 700), resulting in a mesh resolution of
300 x 120 x 140, giving a total of 5,040,000 cells; the cell
size is the same in all directions: Ax = Ay = Az =2 cm. We
performed numerical experiments with coarser meshes con-
taining hexahedral cells with double the edge length (i.e., 4
and 8 cm) and a finer mesh with an edge length of 1 cm. For
90 seconds of actual flow time, the results on the finer mesh
exhibited less than < 1.3% difterence compared to the elected
mesh (edge length of 2 cm).'®

A. Governing equations

The three-dimensional Navier-Stokes Equations (NSE) for
a Newtonian viscous air mixture are considered. For a finite
control volume, V, the multi-component NSE can be written
in the fully-conservative form as follows'”:
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where p is the density; u is the velocity vector; p is the static
pressure; fi is the outward pointing unit normal of a surface
element dA of the closed finite control volume dV; f}, is an ex-
ternal body force; i, = ¢, + p/p is the total specific enthalpy
(per unit mass); ¢; = ¢ +u-u/2 is the total specific energy;
e = ¢, T is the specific internal energy; y; is the mass-fraction
of the j-th species. We denote T the temperature, ¢, the spe-
cific heat capacity at constant volume, and ¥ = ¢, /c, the heat
capacity ratio where ¢, and ¢, are the specific heat capacity at
constant pressure and volume, respectively.
For a Newtonian fluid, the shear stress tensor is given by:

T=A(V-w)lI+y|Veout(Veu)|, ©
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FIG. 1. Illustration of the computational domain. As shown, the room’s length is 6 m, its height 2.4 m, and its width 2.8 m. The air conditioning
unit is centrally located on the ceiling of the room. The (x: 0 m, y: 0 m, z: 0 m) point is located at the bottom left inner corner of the room.
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FIG. 2. Sketch illustrating the size and location of the commercial
four-way square cassette AC unit considered.

where I is the identity tensor; A = —2u/3 is the second vis-
cosity coefficient given by the Stokes hypothesis; u is the
dynamic viscosity. The heat flux is calculated according to
Fourier’s Law of heat conduction, i.e., qc = —k VT, where
K = cppt/Pr is the thermal conductivity and Pr is the Prandtl
number. The species diffusional fluxes are commonly com-
puted via the Fickian (gradient) diffusion approximation, i.e.,
Jj=pD;Vy;, where D; = ;/(p Sc;) is the j-th species mass
diffusivity and Sc is the Schmidt number. The energy equation
includes the inter-diffusional enthalpy flux arising from the
species mixing”, i.e., qa = — X" h;:J;, where the enthalpy of
each i-th species is defined by h; = ¢; + p;/p;. No heat or mass
sources, i.e., i and v, are considered in the present study.

B. Computational method

The computational data are obtained using the block-
structured CFD code CNS3D (Compressible Navier-Stokes
Solver in three-dimensions).”>!. The code solves the advec-
tive terms using the Godunov-type (upwind) method, whose
intercell numerical fluxes are calculated by solving the Rie-
mann problem using the reconstructed values of the primi-
tive variables at the cell interfaces. A one-dimensional swept
unidirectional stencil is used for spatial reconstruction. It in-
cludes high-resolution methods of up to 11" order of accuracy
in space and 4™ order of accuracy in time.

CNS3D can be used to simulate turbulent flows using a
varied range of approaches, such as (i) Reynolds-Averaged
Navier-Stokes (RANS), (ii) implicit Large Eddy Simulations
(ILES), and (iii) Direct Numerical Simulations (DNS).””!
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However, the focus of present simulations is on coarse-
grained ILES, which provides the best approach between ac-
curacy and computational cost for any engineering geome-
try. In classical Large Eddy Simulations (LES), the small-
est length scales, which are the most computationally ex-
pensive to resolve, are removed via low-pass filtering of the
Navier—Stokes equations. The unresolved scales of turbulence
are then modeled using subgrid-scale models. In ILES, the
computational grid filters the small, unresolved scales. The
modeling of the unresolved scales is then achieved implic-
itly through the nonlinear dissipation embedded in the high-
resolution, high-order numerical schemes used to discretize
the convective terms. There is a significant body of work
in the literature, both theoretical and numerical, explaining
ILES methods and demonstrating their accuracy in turbulent
flows.”?

The present study uses the Harten-Lax—van Leer con-
tact (HLLC) approximate Riemann solver with a modified
11™-order weighted-essentially-non-oscillatory (WENO) re-
construction scheme.’">’ High-order WENO schemes have
proven resilient to the low-Mach number dissipation as-
sociated with compressible solvers’ in contrast to Mono-
tonic Upstream-centered Scheme for Conservation Laws
(MUSCL)”, which generally require a low-Mach number
treatment such as that proposed in the references.”® More-
over, the phase/component variables are reconstructed accord-
ing to”’ to avoid spurious numerical oscillations from occur-
ring at interfaces between fluids of different heat capacity ra-
tios (¥ # ¥;) due to the use of the four-equation model or
otherwise, the conservative mass-fraction transport equation
(Eq. (8) is considered a diffuse-interface method).'”

Although the computational cost increases with the order
of the scheme for the same grid resolution, the computational
cost incurred by high-order methods is offset by the increase
in accuracy obtained.”* The above studies have shown that
lower-order methods require much finer grids to attain a sim-
ilar precision as high-order methods. Moreover, high-order
schemes scale more favorably over large numbers of cores and
nodes, further narrowing the difference in the apparent com-
putational expense.

A fourth-order central scheme is used for the viscous terms.
The solution is advanced in time using a five-stage (fourth-
order accurate) optimal strong-stability-preserving Runge—
Kutta method.”® Further details about the code can be found
in Refs.””! and references therein.

C. Data curation

The light-blue shaded regions are the AC unit inlets, push-
ing cold (~18 °C) air in at 4 m/s with a relative humidity of
40% and an angle of 45° degrees outward (towards the room
walls). The total inlet mass-flux is (counter-) balanced by the
light-yellow shaded outlet located in the middle. The initial
room temperature is 25 °C with a 60% relative humidity.

Probes are positioned every half meter in the x direction and
every 40 centimetres in the y—and z directions for 728 probes.

The 13 positions in the x-direction are:

x(i) = [0.01,0.5,1.0,1.5,2.0,2.5,
3.0,3.5,4.0,4.5,5.0,5.5,5.99]"

the seven positions in the y-direction:
y(j) =[0.01,0.4,0.8,1.2,1.6,2.0,2.39]"
and the eight positions in z-direction:
z(k) =[0.01,0.4,0.8,1.2,1.6,2.0,2.4,2.79]"

Note that the +0.01 meters at the start/end of the above coor-
dinate vectors are essentially the cell center locations of the
first computational cells from the room boundaries (walls).
During the 90 seconds of the simulated flow, air properties
were recorded at a regular interval at a sampling rate of al-
most ~111 samples per second, or, in other words, a sampling
frequency of 111 Hz.

Figure 3 plots the temporal variation of the temperature and
relative humidity as measured at three probes. The three probe
locations were chosen due to their importance, which will be
discussed later in the present study.

Of the three probes, probe two is positioned closest to the
AC unit and, as a result, is affected not only the most (in terms
of changes in magnitude) but also the earliest. Moreover, the
magnitude of the oscillations indicates the much greater tur-
bulent state of the air currents in the room that are closer to
the AC unit outlets. By the end of the first 90 s, the air around
probe 2 is almost 1 °C cooler and approximately 1.5% drier.
Importantly, Fig. 3 clearly illustrates the significant differ-
ences in the air properties between different locations inside
the room —at least during the first minute and a half after the
AC is switched on, for the present room and AC configuration
considered.

1Il.  CLUSTERING USING UNSUPERVISED LEARNING
A. Unsupervised Learning Method

Unsupervised learning (UL) represents a core paradigm in
machine learning that has remained consistently relevant in
a wide array of research fields and practical applications, in-
cluding image analysis’”"", sleep stage categorization’', and
detection of mechanical damage.’” Despite their versatility,
UL algorithms encounter specific obstacles in particle cluster-
ing tasks, such as sensitivity to hyperparameters, challenges
with feature selection and dimensionality, and limitations in
scalability, among other issues.'” As implemented in this
study, the RUN-ICON algorithm addresses these challenges
by enhancing confidence and minimizing uncertainty in se-
lecting dominant clusters.'®

A notable advantage of RUN-ICON over other UL ap-
proaches lies in its systematic approach to identifying the opti-
mal number of clusters, reducing the need for intuitive or sub-
jective decision-making. Unlike other methods that rely on
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FIG. 3. Temperature (°C) and relative humidity (RH%) over time

as measured at three probe locations: (a) Probe 1: [x,y,z] =
[1.5,0.8,1.2] m, (b) Probe 2: [x,y,z] = [3.0,1.2,1.6] m, and (c)
Probe 3: [x,y,z] = [5.0, 1.2, 1.6] m.

subjective criteria to determine the best cluster count, RUN-
ICON establishes a structured process to select the optimal
cluster number, ensuring robust and repeatable results. The al-
gorithm identifies dominant cluster centers across multiple it-
erations of the K-means++ method without dependence on the
Sum of Squared Errors. It introduces novel metrics, namely
the Clustering Dominance Index (CDI) and Uncertainty. CDI
reflects the likelihood of a specific clustering pattern based
on its frequency across multiple attempts at a given cluster
count. Uncertainty is measured by the relative difference be-
tween the upper and lower CDI limits for a given configura-
tion, representing the maximum variance from the average for
that particular setup. The algorithm thus focuses on identify-
ing stable clusters that reveal the genuine structure within the
data, enhancing reliability by reducing the impact of outliers
or noise. This approach results in clustering outcomes that are
more robust and interpretable. The steps of the algorithm are
as follows:

1. Execute the K-means++ clustering algorithm 100 times
for a specified number of clusters in each iteration.

2. After each execution, determine the coordinates of the
cluster centers.

3. Compare the cluster center coordinates from all 100
runs to pinpoint those coordinates that occur most fre-
quently.

4. Select the cluster centers with the highest frequency as
the dominant centers for the specified number of clus-
ters and compute the CDI.

5. Repeat steps 1-4 nine additional times, resulting in ten
sets of dominant cluster centers.

6. Calculate the average frequency of occurrence and CDI
for these dominant centers over the ten repetitions, en-
suring consistency across clustering centers. Determine
the upper and lower bounds of these metrics and exam-
ine the variance.

7. Repeat steps 1-6 for different cluster counts, starting
from 3 and progressing up to 10 clusters.

8. Identify the cluster count with the highest average CDI
across all clustering attempts (from 3 to 10 clusters),
select the corresponding dominant cluster centers, and
ensure that the variance between the upper and lower
bounds remains below 30%.

9. Choose the cluster count with the highest average CDI
and minimal variance as the optimal number of clusters
for RUN-ICON.

The advantages of the RUN-ICON algorithm compared to
other UL techniques were demonstrated in a prior study.'®
Its reliability and interpretability were validated across vari-
ous computational datasets where the intended clustering pat-
terns were predefined. The algorithm achieved approximately
97% accuracy in detecting the expected clusters, compared to
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FIG. 4. The Mickey Mouse dataset: (a) "face" and "ears", as gener-
ated in three circles with random points within every circle, (b) pre-
dicted dominant clustering by RUN-ICON algorithm. Each colour
indicates points belonging to the same cluster, and the stars indicate
the cluster centers.

80% accuracy from other methods. To offer another exam-
ple of the algorithm’s ability to identify dominant clusters, we
generated for the present study a dataset of 7,500 points in
(x, y) space, which represented the head of Mickey Mouse,
i.e, one central circle representing the “face” and two smaller
circles, symmetrically attached to the bigger one, represent-
ing the “ears”. All data points within the three circles were
generated randomly (Figure 4(a)). It is expected that RUN-
ICON should predict three dominant clusters, thus separating
the “face” from the “ears”. Indeed, the algorithm predicted as
dominant the separation in three clusters, as shown in Fig-
ure 4(b), with high confidence (97%) and low uncertainty
(2%). The two smaller clusters resemble Mickey’s “ears”,
positioned symmetrically above the larger central cluster that
forms the “face”. All other clustering configurations were pre-
dicted with confidence less than 40%.

Additionally, RUN-ICON was tested on mathematically
simulated particle dispersions'’, where particles were ran-
domly distributed in space. RUN-ICON identified dominant
clustering structures, unlike other UL techniques, which failed

to do so. Furthermore, the combination of CFD and RUN-
ICON either independently” or in conjunction with Gaus-
sian Mixture Models'*, showcased the capabilities of the al-
gorithm to identify meaningful particle clusters effectively.
These successes highlight the algorithm’s potential for appli-
cation in complex flow scenarios and realistic contexts.

IV. ANALYSIS OF TEMPORAL FLOW DYNAMICS IN A
CONTROLLED ROOM ENVIRONMENT

This work aims to identify distinct comfort zones within a
room by applying the RUN-ICON algorithm for the flow de-
scribed in Section I, driven by variations in temperature, hu-
midity, and airflow patterns. By categorizing regions based on
similar flow characteristics, we can define representative clus-
ters that reflect different comfort levels experienced within
the space. This clustering approach highlights specific com-
fort zones and helps pinpoint optimal, representative loca-
tions for future measurements. These identified positions will
serve as reference points for similar studies in other rooms,
enabling efficient and targeted data collection without need-
ing to instrument each room extensively. This streamlined
method provides a transferable framework for assessing com-
fort zones and air distribution in diverse indoor environments.

A. Data Pre-processing and Derived Metrics

We utilize computational data from 728 location probes
throughout the room, recording measurements of the x, y, and
z components of velocity and temperature and relative humid-
ity. We analyze them at three key time points (40, 60, and
90 seconds). These time points capture instances as the tur-
bulent flow evolves, influenced by the introduced cooler air.
This setup enables a detailed examination of how air move-
ment and parameter distributions change over time.

To distill the complexity of the collected data, we focus,
apart from temperature and relative humidity, on two derived
parameters that serve as robust indicators of flow structure and
similarity across regions. The first parameter is the Euclidean
distance (L, norm) from the room’s origin (bottom left inner
corner, as shown in Figure 1), which represents spatial prox-
imity and allows us to account for potential regions of influ-
ence from the air conditioning source. This parameter pro-
vides a measure of spatial grouping critical for understanding
how regions relate based on distance, potentially sharing sim-
ilar flow characteristics.

The second parameter is the magnitude of the velocity vec-
tor, calculated from the x, y, and z velocity components. This
measure serves as an indicator of the local intensity of air-
flow. By analyzing velocity magnitudes, we gain insights into
higher and lower air momentum zones, which often reflect
the degree of turbulence in different regions. The L, norm of
distances and the velocity magnitudes offer complementary
perspectives for delineating distinct regions within the room,
potentially enabling the categorization of flow areas with UL
based on spatial and dynamic flow attributes.
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These four chosen parameters allow for a focused, inter-
pretable analysis. They contribute to a better understanding
the underlying flow structure and enable meaningful catego-
rization of flow regions influenced by the air conditioning dy-
namics and room geometry.

B. Statistical Analysis of Flow Variables

The Spearman rank correlation was calculated to analyze
relationships between the four chosen variables (namely, L,
norm, velocity magnitude, temperature and relative humid-
ity) within the flow data and its corresponding p-value for the
three-time points. The Spearman rank correlation r is a non-
parametric measure that assesses the strength and direction of
a monotonic relationship between two variables, regardless of
the distribution or linearity of the data.’* Spearman’s correla-
tion coefficient ranges from -1 to +1, where values close to +1
or -1 indicate a strong positive or negative association, respec-
tively, and values near zero suggest no monotonic relation-
ship. The p-value associated with each Spearman correlation
quantifies the probability that the observed correlation could
occur by random chance. A low p-value (typically below
0.05) indicates a statistically significant relationship, suggest-
ing that the correlation is unlikely due to random variation and
that there is a meaningful association between the variables
analyzed.” This approach provides insight into variable in-
terdependencies within the flow regions, guiding further anal-
ysis and interpretation of comfort zones. In Tables I-VI, the
Spearman rank correlation matrices and their corresponding
p-value matrices for the L, norm D, velocity v, temperature 7'
and relative humidity RH at 40 s, 60 s and 90 s are presented:

TABLE 1. Spearman Rank Correlation Matrix at 40 s for L, norm,
velocity, temperature and relative humidity.

| D v T RH
D 1.000 -0.030 -0.007 0.011
v -0.030 1.000 -0.431 -0.432
T -0.007 -0.431 1.000 0.978
RH 0.011 -0.432 0.978 1.000

TABLE II. p-values Matrix at 40 s for L, norm, velocity, temperature
and relative humidity.

D v T RH
D 0.000 0.413 0.852 0.763
v 0.413 0.000 0.000 0.000
T 0.852 0.000 0.000 0.000
RH 0.763 0.000 0.000 0.000

Next, we discuss the key observations and interpret the cor-
relations while considering the impact of the air conditioning
unit’s operation.

TABLE III. Spearman Rank Correlation Matrix at 60 s for L, norm,
velocity, temperature and relative humidity.

D v T RH
D 1.000 -0.079 0.135 0.138
v -0.079 1.000 -0.463 -0.452
T 0.135 -0.463 1.000 0.991
RH 0.138 -0.452 0.991 1.000

TABLE 1V. p-values Matrix at 60 s for L, norm, velocity, tempera-
ture and relative humidity.

D v T RH
D 0.000 0.034 0.000 0.000
v 0.034 0.000 0.000 0.000
T 0.000 0.000 0.000 0.000
RH 0.000 0.000 0.000 0.000

TABLE V. Spearman Rank Correlation Matrix at 90 s for L, norm,
velocity, temperature and relative humidity.

| D v T RH
D 1.000 -0.031 0.073 0.077
v -0.031 1.000 -0.436 -0.430
T 0.073 -0.436 1.000 0.992
RH 0.077 -0.430 0.992 1.000

TABLE VI. p-values Matrix at 90 s for L, norm, velocity, tempera-
ture and relative humidity.

\ D v T RH
D 0.000 0.406 0.048 0.039
v 0.406 0.000 0.000 0.000
T 0.048 0.000 0.000 0.000
RH 0.039 0.000 0.000 0.000

1. Correlation Between Temperature and Relative Humidity

In all time instances (40s, 60s, and 90s), there is a consis-
tently high positive correlation between temperature and rel-
ative humidity with strong statistical significance. At 40 s,
r=10.978 with p = 0.000; At 60 s, r = 0.991 with p = 0.000;
At 90 s, r = 0.992 with p = 0.000. This strong correlation is
expected because temperature and humidity are often interre-
lated in a controlled environment. Initially, both temperature
and humidity were higher in the room, likely due to external
environmental factors and the room’s insulation properties.
As the air conditioner begins to function, it simultaneously
reduces the temperature and relative humidity. The positive
correlation between 7" and RH suggests that the cooling and
drying effects of the air conditioner are occurring in tandem,
maintaining a relationship between the two variables. Cooler
air holds less moisture, resulting in a drop in temperature and
humidity, reinforcing the close relationship between these two
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variables.

2. Negative Correlation Between Velocity and
Temperature/Relative Humidity

Another notable pattern in the matrices is the consistent
negative correlation between velocity (v), temperature (T),
and relative humidity (RH), again with strong statistical sig-
nificance. At 40 s, the correlations are » = —0.431 for 7" with
p =0.000, and r = —0.432 for RH with p = 0.000. At 60
s, the correlations are r = —0.463 for T with p = 0.000, and
r = —0.452 for RH with p = 0.000. At 90 s, the correlations
are r = —0.436 for T with p = 0.000, and r = —0.430 for
RH with p = 0.000. This negative correlation reflects that the
HVAC introduces air at a higher velocity than the room’s ini-
tial, relatively stagnant conditions. The incoming conditioned
air is colder and drier than the existing room air. This nega-
tive correlation suggests that regions of the room experiencing
higher air velocity are closer to the cooling source, where the
air conditioner’s actions have significantly reduced the tem-
perature and humidity.

3. Distance and Flow Dynamics

The matrices also show relatively weak correlations be-
tween distance parameter D and velocity v, temperature 7'
or humidity RH. At 40 s for v, T, and RH, r = —0.030,
r = —0.007, and r = 0.011 respectively, with corresponding
p-values of 0.413, 0.852, and 0.763. At 60 s, D has corre-
lations of r = —0.079 with v (p = 0.034), r = 0.135 with T
(p =0.000), and r = 0.138 with RH (p = 0.000). At 90 s,
D shows correlations of r = —0.031 with v (p = 0.406), r =
0.073 with T (p = 0.048), and r = 0.077 with RH (p = 0.039).
The small correlations between distance and velocity, temper-
ature or humidity suggest that, over time, the spatial distri-
bution of velocity, temperature and humidity in the room is
becoming more uniform. In the initial moments, the air con-
ditioner’s effect is most pronounced near the source of condi-
tioned air (closer to the AC unit), leading to a more noticeable
difference in velocity, temperature and humidity at various
distances. Over time, however, the air becomes more evenly
distributed across the room, reducing their gradient with re-
spect to distance.

The strong positive correlation between temperature and
relative humidity at all time steps highlights the interdepen-
dent nature of these two variables in a room subjected to air
conditioning. The consistently negative correlation between
velocity and temperature and relative humidity reflects the
role of the air conditioner in displacing warmer, moister air
with cooler, drier air. These findings align with the expected
physical behavior of the system. As higher-velocity air enters
the room, it lowers both temperature and humidity, creating
gradients that are eventually smoothed out over time as the
room reaches a more uniform state.

C. Cluster-Based Analysis for Optimal Probe Placement

The study aims to identify areas in the room with similar
temperature and velocity patterns, allowing monitoring with
fewer probes. Clustering was carried out using the RUN-
ICON algorithm, focusing on temperature and velocity rela-
tive to distance while excluding relative humidity because it
heavily depends on temperature. The goal is to demonstrate
that the dominant clusters share similar distances from the ori-
gin (measured by the L, norm) across equivalent spatial posi-
tions in all cases. For this reason, a radius of influence for
each cluster center is determined by calculating the standard
deviation of the spatial coordinates. This allows us to ver-
ify that the corresponding predicted centers fall within each
other’s radius of influence. As demonstrated, by limiting spa-
tial representation to the Ly norm of distances, clustering reli-
ability increased, achieving 70-90% confidence levels across
clusters.

Since predicted clusters have clear spatial boundaries, non-
linear programming can determine the exact x, y, and z coor-
dinates for flow monitoring at these locations. For this rea-
son, the Sequential Least Squares Programming (SLSQP) al-
gorithm was employed to convert the L, norms back to x, y,
and z coordinates, constrained by each cluster’s spatial range
through the formulation of an objective function from the
equality:

Py 42 =13 (10)

SLSQP is an iterative optimization algorithm commonly used
for solving constrained optimization problems™. It can han-
dle both linear and non-linear constraints and bounds on vari-
ables. SLSQP operates by approximating the original prob-
lem as a series of quadratic programming subproblems and
sequentially improves the solution’s estimate using first-order
derivatives of the objective function and constraints. This
makes it a robust and efficient method for handling non-linear
programming problems.

D. Results

The clustering analysis provided insights into the room’s
spatial and thermal dynamics at different times, influencing
probe placement recommendations.

1. Time: 40 seconds

Temperature-distance and velocity-distance clustering re-
vealed three distinct zones (see Fig. 5) with (confidence, un-
certainty): (62.6%, 15%) and (97%, 2%), respectively. The
three clusters are denoted by the indices (1, 2, 3), correspond-
ing to the room’s left, middle, and right sections, respectively,
as illustrated in Fig. 1. The radii of influence (i.e., the standard
deviation, in m) for the three clusters (1, 2, 3) were (0.65, 0.52,
0.57) and (0.64, 0.51, 0.58), respectively. Using SLSQP op-
timization, cluster positions were calculated within each clus-
ter. The constraints in x, y, and z are the same for temperature
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FIG. 5. Clustering at time 40 s from the start of the simulation. The
x-axis is the distance from the origin (L; norm) in m, and the y-axis
is either (a) Temperature (in °C) or (b) Velocity (in m/s). Each color
indicates points of the room belonging to the same cluster and the
stars indicate the cluster centers.

and velocity. They only differ in x, based on the cluster po-
sition, whether closer to the side walls or the center of the
room. In this way, the constraints in the x-direction are given
in Table VII, while the constraints in y and z are given in Ta-
ble VIII. The objective functions for temperature and velocity
result from Eq. (10) with L, as recorded in Table [X.

TABLE VII. Constraints in the x-direction for the three dominant
clusters at 40 sec.

Cluster\ Lower bound (m) Upper bound (m)
1 0.5 2.9
2 2.5 4.5
3 3.1 5.5

In this way, we obtain the optimal cluster coordinates for

TABLE VIII. Constraints in the y- and z-directions for the three dom-
inant clusters at 40 sec.

Axis\ Lower bound (m) Upper bound (m)
y 0.0 2.4
z 0.0 2.8

TABLE IX. L, values for the three dominant clusters at 40 sec.

Cluster\ L, for temperature L, for velocity
1 2.17 2.12
2 3.86 3.76
3 5.72 5.66

temperature as: cluster 1 (x,y,z) = (1.59, 0.96, 1.12) m, clus-
ter 2 (x,y,z) = (3.28, 1.31, 1.53) m, and cluster 3 (x,y,z) =
(5.42,1.18,1.38) m. Similarly, the optimal cluster coor-
dinates for velocity are predicted as: cluster 1 (x,y,z) =
(1.56,0.94, 1.09) m, cluster 2 (x,y,z) = (3.22, 1.29, 1.50) m,
and cluster 3 (x,y,z) = (5.37, 1.17, 1.37) m.

2. Time: 60 seconds

Temperature-distance clustering revealed, as before, three
distinct zones (see Fig. 6(a)) with (confidence, uncertainty):
(75%, 6%). At this time, velocity-distance clustering revealed
an additional cluster, likely resulting from localized turbu-
lence, which divided the central region of the room into two
distinct areas, as shown in Fig. 6(b). The confidence and
uncertainty for this clustering were (87%, 7%). However,
the minor central cluster, characterized by higher velocities,
contained only 17 points compared to the major central clus-
ter’s 255 points. Consequently, given the high confidence and
low uncertainty associated with separating into three domi-
nant clusters (73%, 14%), the minor cluster was disregarded
for simplicity, and its points were merged into the major cen-
tral cluster. The radii of influence for the three clusters (from
left to right, as seen in Fig. 6) were (0.66, 0.49, 0.61) m and
(0.62, 0.53, 0.57) m, for temperature and velocity, respec-
tively. Using SLSQP optimization, cluster positions were cal-
culated within each cluster. The constraints in x, y, and z are
the same as in the 40 s case. The objective functions differ
due to the distances predicted for the cluster centers’ loca-
tions. The objective functions for temperature and velocity
result from Eq. (10) with L, as recorded in Table X.

In this way, we obtain the optimal cluster coordinates for

TABLE X. L, values for the three dominant clusters at 60 s.

Cluster\ L, for temperature L, for velocity
1 2.19 2.08
2 3.80 3.71
3 5.63 5.64
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FIG. 6. Clustering at time 60 s from the start of the simulation. The
x-axis is the distance from the origin (L; norm) in m, and the y-axis
is either (a) Temperature (in °C) or (b) Velocity (in m/s). Each color
indicates points of the room belonging to the same cluster and the
stars indicate the cluster centers.

temperature as cluster 1 (x,y,z) = (1.69, 0.81, 0.95) m, clus-
ter 2 (x,y,z) = (3.06, 1.47, 1.71) m, and cluster 3 (x,y,z) =
(4.88,1.17,1.37) m. Similarly, the optimal cluster coor-
dinates for velocity are predicted as cluster 1 (x,y,z) =
(1.54,0.93,1.08) m, cluster 2 (x,y,z) = (3.15, 1.26, 1.47) m,
and cluster 3 (x,y,z) = (5.25, 1.26, 1.47) m.

3. Time: 90 seconds

Higher confidence (82% for temperature and 97% for ve-
locity) and lower uncertainty levels (9% for temperature and
2% for velocity) validated the clustering results, establishing
three optimal clusters, consistent with the earlier clustering re-
sults (see Fig. 7). The radii of influence (in m) for the three
clusters (from left to right, as seen in Fig. 7) were (0.64, 0.51,
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FIG. 7. Clustering at time 90 s from the start of the simulation. The
x-axis is the distance from the origin (L norm) in m, and the y-axis
is either (a) Temperature (in °C) or (b) Velocity (in m/s). Each color
indicates points of the room belonging to the same cluster and the
stars indicate the cluster centers.

0.58) and (0.63, 0.52, 0.55) for temperature and velocity, re-
spectively. Using SLSQP optimization, cluster positions were
calculated within each cluster. The constraints in x, y, and z
are the same as in the 40 and 60 s case. Only the objective
functions differ due to the different distances predicted for the
cluster center’s location. The objective functions for temper-
ature and velocity result from Eq.( 10) with L, as recorded in
Table XI.

TABLE XI. L, values for the three dominant clusters at 90 s.

Cluster\ L, for temperature L, for velocity
1 2.18 2.20
2 3.80 3.83
3 5.65 5.67
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In this way, we obtain the optimal cluster coordinates for
temperature as: cluster 1 (x,y,z) = (1.54, 0.93, 1.08) m, clus-
ter 2 (x,y,z) = (3.00, 1.52, 1.77) m, and cluster 3 (x,y,z) =
(5.25,1.26,1.47) m. Similarly, the optimal cluster coor-
dinates for velocity are predicted as: cluster 1 (x,y,z) =
(1.55,0.92, 1.08) m, cluster 2 (x,y,z) = (3.24, 1.29, 1.51) m,
and cluster 3 (x,y,z) = (5.26, 1.26, 1.47) m.

4. Probe group clustering identification

‘We identified three distinct locations within the room that
can adequately characterize the airflow around the air condi-
tioning unit and help define comfort zones. These locations
were determined based on their ability to represent the flow
regions at 40 s, 60 s, and 90 s after allowing sufficient time for
turbulence to develop (90 s). Table XII gives the minimum-
maximum values from the above analyses for each coordinate
(X, y, z) and a radius of influence. The radii of influence were
calculated as the mean of all standard deviations for tempera-
ture and velocity for each cluster center.

TABLE XII. Main cluster location bounds and radii of influence

NO%

Top-down
view

Side view @

Cluster‘ X (m) y (m) z (m) radius of influence (m)
1 1.54-1.69 0.81-0.96 0.95-1.12 0.62
2 3.00-3.28 1.26-1.52 1.47-1.77 0.52 v
3 4.88-5.42 1.17-1.26 1.37-1.47 0.58 "{

The maximum and minimum coordinates shown in Ta-
ble XII represent the intervals within which the clusters may
be identified. Notably, these intervals all fall within the calcu-
lated radius of influence for their corresponding cluster cen-
ter. This confirms the stability and reliability of the predicted
locations as representative points for both temperature and ve-
locity distributions. In this way, we may select the mean val-
ues for each location’s coordinates as representative positions.
For the given room dimensions, these are given in Table XIII.
Figure 8 illustrates the main clusters’ positions as centers of
spheres with radii equal to the corresponding radii of influ-
ence, as given in Table XII.

TABLE XIII. Main cluster locations

Location | x (m) y (m) z (m)
1 1.58 0.92 1.10
2 3.16 1.36 1.58
3 5.24 1.22 1.42

In our data, the closest probe positions corresponding to
these locations are given in Table XIV.

These selected positions provide an effective and simpli-
fied representation of airflow within the room, particularly for
defining comfort zones under the influence of the air condi-
tioning unit.

‘e
@

FIG. 8. Illustration of the three clusters’ positions as centers of
spheres with radii equal to the corresponding radii of influence. Clus-
ter 1: green coloured, Cluster 2: blue coloured, and Cluster 3: pink
coloured shapes.

TABLE XIV. Closest probe positions

Probe positions‘ x (m) y (m) z (m)
1 1.5 0.8 1.2
2 3,0 1.2 1.6
3 5.0 1.2 1.6

E. Turbulence analysis at probe positions

At the identified probe points, turbulent characteristics were
evaluated through Reynolds number, Re, and Turbulence In-
tensity, 1. The velocity magnitude time series, from 0to 90's,
was retrieved from the data set for each of the three probes.
Using these velocity data, the mean and standard deviation
were determined. Then, Re and 71 were are calculated as
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follows™’:
Re = pil/u (11)

where p = 1.2 kg/m? is the density of air; 7 is the mean of the
velocity magnitude (m/s); L = 3 m is the characteristic length,
chosen as half the x-dimension of the room (comparable to
the room’s height and width); g = 1.81 x 10> Pa-s is the
dynamic viscosity of the air.

The turbulence intensity, T, can be obtained —in terms of
percentage— according to:

TI=0/ix 100 (12)

where o is the standard deviation of the velocity (m/s).

The analysis revealed distinct flow characteristics at each
probe location: (i) The left side of the room: The Reynolds
number found is Re = 40,375, with a turbulence intensity of
T1=58%; (ii) The right side of the room: The Reynolds num-
ber is Re = 28,492, with a turbulence intensity of 71 = 54%;
and (iii) Intermediate region, near the air conditioner: The
Reynolds number is much higher at Re = 70,460, while the
turbulence intensity is slightly lower at 7/ = 47%. These
results indicate varying flow characteristics across the room.
On the left side, the higher turbulence intensity reflects more
pronounced velocity fluctuations. The Reynolds number and
turbulence intensity are lower on the right side, suggesting a
more stable flow. The flow exhibits a much higher Reynolds
number in the intermediate region, driven by increased veloc-
ities, indicating the dominance of inertial forces over viscous
forces. Despite this, the lower turbulence intensity suggests
reduced velocity fluctuations, marking a transition towards
laminar behavior and smoother flow.

F. Discussion

The findings from this study offer significant insights into
probe placement optimization within an air-conditioned envi-
ronment where turbulent airflow is modelled. By applying
clustering techniques and CFD simulations, we could map
the room’s temperature, humidity, and velocity distributions,
identifying regions with distinct thermal and flow characteris-
tics. This section explores the practical implications of these
results, the effectiveness of the methodology, and potential av-
enues for further research and application.

The study demonstrates that airflow in an enclosed room
environment, especially one with centrally located air con-
ditioning, does not distribute uniformly. Instead, due to the
turbulent flow generated by the temperature and velocity dif-
ferential of the incoming air, pockets of varying temperature
and velocity develop within the space. For HVAC system
design, this information is essential, as it highlights the non-
uniform cooling distribution and potential zones where addi-
tional airflow control may be necessary to maintain occupant
comfort. A significant outcome is the relationship between
the Reynolds number and Turbulence Intensity at the selected
probe locations. Higher Re values near the air-conditioning
outlet indicate strong, inertial-dominated airflow with lower

12

T1, suggesting that air in these zones is less affected by vis-
cous forces and maintains a stable, directional flow. Such ar-
eas offer a smoother and more consistent airflow, which gen-
erally translates to higher thermal comfort for occupants. On
the other hand, lower Re values and higher 77 levels were
recorded closer to the room’s boundaries, where airflow is
more disrupted. This suggests that edge areas of the room
might experience drafts or fluctuating air speeds, potentially
causing discomfort. For HVAC systems, understanding these
distinctions in airflow behavior can be pivotal in develop-
ing strategies that mitigate uncomfortable drafts and optimize
cooling patterns.

The RUN-ICON clustering approach applied in this study
proved effective in identifying probe positions that adequately
capture the spatial and thermal variations within the room. By
categorizing regions based on temperature-velocity profiles,
the clustering approach reduced the number of probes needed
while allowing comprehensive data collection across the en-
tire space. Notably, using the L, norm effectively reduced
spatial dimensionality and focused on meaningful positional
relationships relative to the room’s origin. Sequential Least
Squares Programming (SLSQP) for determining probe coor-
dinates within each cluster further contributed to the optimiza-
tion by aligning probe placement with calculated cluster cen-
ters while maintaining a margin of uncertainty around each
probe position. This refinement ensures that the selected posi-
tions provide adequate coverage and account for spatial vari-
ability within each cluster, which is vital in turbulent flow con-
ditions. This clustering-based approach to probe placement
has practical implications for various fields beyond HVAC.
In industrial settings, for example, where monitoring airflow,
temperature, or humidity is crucial, optimized probe place-
ment can reduce installation and maintenance costs by focus-
ing probes on key areas. The methodology applied here also
holds potential for environments where space constraints limit
the number of probes that can be installed, as it provides a ro-
bust, data-driven method for choosing probe locations with
maximum efficiency.

RUN-ICON ensures robustness by iteratively identifying
stable clusters and employing novel metrics such as the Clus-
tering Dominance Index (CDI) and Uncertainty to evaluate
the consistency of clustering outcomes. These features mini-
mize the impact of noise and outliers while maintaining reli-
able performance across diverse scenarios. Furthermore, the
integration of CFD simulations enhances the robustness of the
methodology by providing high-fidelity data that capture the
intricate dynamics of turbulent airflow. The high accuracy
of the algorithm has been demonstrated in previous works,
where the algorithm was compared to other UL methods and
metrics.' %'

Interpretability is a key strength of this approach. RUN-
ICON aligns clustering outcomes with fundamental physics
by focusing on physically meaningful variables, such as ve-
locity, temperature, and spatial proximity. This alignment al-
lows clear insights into airflow patterns, facilitating the op-
timization of probe placements. Additionally, the structured
outputs of the clustering algorithm, including confidence in-
tervals and cluster boundaries, enhance its accessibility for
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engineering applications.

The scalability of this methodology is demonstrated not
only in its ability to handle large datasets, such as those from
728 probes but also in its adaptability to spaces of different
dimensions. Table XV provides a general formula for scal-
ing the positions of the three identified cluster centers based
on room dimensions. Using this proportional approach, we
demonstrate its application to a new room with dimensions of
10.0 m x 3.0 m x 4.0 m in the example following the table.

TABLE XV. Generic formula for scaling cluster positions based on
room dimensions.

Probe positions X (m) y (m) z (m)
1 % x Length % x Height % x Width
2 % x Length % x Height % x Width
3 % x Length % x Height % x Width

For a room measuring (x,y,z) = (10.0, 3.0, 4.0 ) m, the
scaled positions of the three probes are calculated as: probe
1 (x,y,2)=(2.63, 1.15, 1.57) m, probe 2 (x,y,z)= (5.27, 1.70,
2.26) m, probe 3 (x,y,z)=(8.72, 1.53, 2.03) m.

To further validate the scalability of the proposed methodol-
ogy, future work will focus on testing these proportional clus-
ter placements in rooms of various dimensions and configu-
rations. These tests will help determine whether the scaled
positions reliably capture airflow and thermal characteristics
in different settings, ensuring the robustness and versatility of
the approach for real-world applications.

While the clustering and optimization techniques applied
here demonstrate significant potential, we may identify ar-
eas where further consideration should be given. Firstly, this
study assumes a static setup of the air-conditioning unit and
room boundaries. In real-world scenarios, factors such as oc-
cupant movement, furniture placement, and other obstructions
can alter airflow patterns, affecting temperature and velocity
distributions. Future studies could incorporate dynamic fac-
tors or real-time adjustments to the clustering analysis based
on updated flow data, potentially making the probe placement
even more responsive to environmental changes. Addition-
ally, although the CFD simulations provide a high-fidelity rep-
resentation of turbulent flow, certain assumptions —such as
uniform air properties and idealized boundary conditions—
may differ from actual conditions. Including a broader range
of boundary conditions or using experimental validation with
simulations could further refine these findings. Lastly, al-
though excluding relative humidity (RH) from the clustering
criteria was justified due to its correlation with temperature,
there may be situations where RH changes independently of
temperature (e.g., in humid or damp environments). Future
work could explore how additional environmental factors im-
pact clustering confidence and probe placement recommenda-
tions.

V. CONCLUSIONS

This study presents an innovative approach for optimizing
probe placement in air-conditioned spaces by integrating com-
putational fluid dynamics (CFD) simulations with the RUN-
ICON clustering algorithm. The method involves clustering
distinct thermal and velocity zones and strategically position-
ing probes based on temperature and velocity distributions.
This strategy minimizes redundancy and maximizes spatial
coverage, offering a practical solution for monitoring indoor
environments where airflow and temperature control are crit-
ical, particularly in HVAC systems that enhance occupant
comfort and energy efficiency.

The findings reveal the non-uniform nature of airflow in
enclosed spaces, influenced by turbulent flow patterns and
thermal gradients. Higher Reynolds numbers (Re) near air-
conditioning outlets are associated with stable airflow and low
turbulence intensity (TI), favoring thermal comfort. In con-
trast, lower Re and higher TI near boundaries can disrupt air-
flow, potentially causing drafts and discomfort. These insights
are crucial for HVAC design, enabling engineers to target spe-
cific airflow characteristics, such as maintaining high Re in
seating areas for stability and minimizing high TT near occu-
pants to reduce drafts, enhancing comfort and efficiency.

The study’s optimized probe placements provide a frame-
work for efficient environmental monitoring, reducing the
probes needed while maintaining comprehensive data collec-
tion. Using the L, norm and Sequential Least Squares Pro-
gramming facilitated the precise alignment of probes with
cluster centers, accounting for spatial variability. These ad-
vancements can cut costs and improve maintenance efficiency
in HVAC systems. Beyond HVAC, the methodology can be
applied in industrial settings, allowing effective monitoring
of temperature, velocity, and humidity with fewer resources.
Further research incorporating dynamic factors, real-time val-
idation, and the inclusion of relative humidity (RH) could re-
fine the approach, expanding its applicability to various en-
vironmental conditions and enhancing its responsiveness to
real-world scenarios.
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