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Understanding the dispersion of particles in enclosed spaces is crucial for controlling the spread of infectious diseases.

This study introduces an innovative approach that combines an unsupervised learning algorithm with a Gaussian mix-

ture model to analyze the behavior of saliva droplets emitted from a coughing individual. The algorithm effectively

clusters data, while the Gaussian mixture model captures the distribution of these clusters, revealing underlying sub-

populations and variations in particle dispersion. Using computational fluid dynamics simulation data, this integrated

method offers a robust, data-driven perspective on particle dynamics, unveiling intricate patterns and probabilistic dis-

tributions previously unattainable. The combined approach significantly enhances the accuracy and interpretability of

predictions, providing valuable insights for public health strategies to prevent virus transmission in indoor environ-

ments. The practical implications of this study are profound, as it demonstrates the potential of advanced unsupervised

learning techniques in addressing complex biomedical and engineering challenges and underscores the importance of

coupling sophisticated algorithms with statistical models for comprehensive data analysis. The potential impact of these

findings on public health strategies is significant, highlighting the relevance of this research to real-world applications.

I. INTRODUCTION

Detecting early signs of virus carriers and examining virus

transmission dynamics through the air during coughing and

sneezing in indoor environments is essential for reducing the

impact on public health. In pathogens research, limiting fac-

tors included the irreproducibility of in-vitro studies in in-

vivo contexts due to the complexity of physiological pro-

cesses and the behavior of genetically modified tissues.1 His-

torically, mathematical models have been pivotal in address-

ing these issues, but they involve computationally expensive

simulations.2,3 Performing multi-phase computational fluid

dynamics (CFD) simulations for virus transmission through

the air has provided significant insights,4,5. Still, in a three-

dimensional space, it can be computationally expensive. Fur-

thermore, installing sensors indoors to monitor particles and

environmental conditions on a large scale could be technically

challenging. Developing methods to reduce the computational

and experimental burden could provide a promising alterna-

tive.

Studying particle dispersion in enclosed spaces is essential

for several reasons beyond the context of COVID-19. One

significant aspect is indoor air quality. This involves under-

standing the dynamics of how particles disperse, which can

help assess the health risks associated with indoor air pollu-

tants, such as dust, allergens, and volatile organic compounds.

Additionally, insights into particle movement can inform the

design of ventilation systems to improve air quality and re-

duce exposure to harmful particles.

Regarding occupational safety, studying particle dispersion

is crucial for managing exposure to workplace hazards, such

a)Electronic mail: nchristakis@tem.uoc.gr
b)Electronic mail: Author to whom correspondence should be addressed:

drikakis.d@unic.ac.cy.

as chemical fumes or fine particulates in industrial settings. It

also ensures regulatory compliance by keeping particle levels

within safe limits, often a legal requirement. From an envi-

ronmental control perspective, controlling particle dispersion

is essential in laboratories or clean rooms to prevent contam-

ination of sensitive processes or products. Moreover, the po-

tential for optimizing airflow and filtration systems based on

particle dispersion studies to lead to more energy-efficient en-

vironmental control systems is a reason for optimism about

the future.

In public health, understanding how particles, including

pathogens, disperse is a critical piece of knowledge in manag-

ing the spread of airborne diseases beyond COVID-19. This

knowledge is also invaluable for emergency preparedness,

aiding in the development of effective response strategies in

the event of a biological or chemical threat. The urgency of

our research is underscored by the importance of understand-

ing how particles disperse in managing the spread of airborne

diseases.

Finally, in building design and architecture, properly man-

aging particle dispersion is not just a technical consideration

but a key factor in ensuring occupants’ overall comfort and

well-being. It also supports sustainable practices by reducing

the need for excessive air filtration and conditioning. These

considerations highlight the broad relevance of particle dis-

persion studies, which draw on principles from physics, en-

gineering, and public health in promoting health, safety, and

efficiency in enclosed spaces.

Machine Learning (ML) can reveal hidden patterns within

noisy or incomplete data.6–9 Unsupervised Learning (UL), in

particular, has achieved significant success across various sci-

entific domains, especially for complex problems involving

data set grouping. These problems range from deciphering

complex genetic structures10 and understanding natural lan-

guage semantics11 to discovering astronomical phenomena12,

among other applications. UL is advantageous because it

can handle unlabelled data, including experimental, compu-
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tational, or field measurements, without user intervention.

This capability is particularly relevant given the persistent

gaps in our understanding of the physics underlying vari-

ous processes, such as virus transmission. Several UL algo-

rithms have been developed.13–15 However, UL in engineer-

ing, physics, and biomedical applications encompasses higher

uncertainty due to the elusive nature of underlying physical

processes.15 Unlike general data sets in economics, market-

ing, or media, pattern classification and prediction in fluid me-

chanics and engineering must be physics-relevant and explain-

able. Simplicity in ML algorithms is also essential to facilitate

explainability and broader application with confidence.

Recent advancements in UL, such as the Reduce UNcer-

tainty and Increase CONfidence (RUN-ICON) algorithm14,

have further expanded its applicability. This state-of-the-

art algorithm has demonstrated effectiveness in reliably clus-

tering artificially generated and real-world data. Applying

the RUN-ICON algorithm to physics-based data produced

by CFD can provide invaluable insights into the behavior of

saliva droplets and aerosols emitted from coughing or sneez-

ing. This analysis offers a data-driven perspective on virus

transmission dynamics that was previously unattainable. It

has only been very recently that combining UL and CFD in

particle-driven dynamics has been attempted.16 This combina-

tion offers a promising avenue for advancing our understand-

ing in an era where precision and rapid response to emerging

infectious diseases are paramount. This study is motivated by

the potential of gaining better insight into particle dispersion

through the air by incorporating a stochastic Gaussian Mixture

Model (GMM) into the UL methodology. GMMs are used to

model data distribution by representing it as a mixture of sev-

eral Gaussian distributions, allowing for the identification of

underlying sub-populations within the data.17

While UL effectively uncovers hidden patterns in unlabeled

data, it often struggles to accurately model the complex, mul-

timodal distributions commonly found in large datasets. On

the other hand, GMMs, known for their ability to represent

such distributions, require a robust method for initial pattern

identification and clustering. By combining UL with GMMs,

we can harness the exploratory power of UL to detect pat-

terns without prior labels and then refine these patterns into

a probabilistic framework using GMMs. This integrated ap-

proach is particularly crucial for analyzing complex data, such

as particle trajectories, where traditional clustering methods,

with their inherent limitations, fail to capture the full dynam-

ics. Our study demonstrates that the synergy between UL and

GMMs enables a more comprehensive and insightful analysis,

offering a depth of understanding that can not be attained with

either method alone.

By utilizing GMMs, we aim to enhance clustering and anal-

ysis capabilities, providing a deeper understanding of virus

transmission dynamics based on the probabilistic nature of

such events. This means that instead of assigning a data point

to a single cluster, GMMs provide a more subtle view by indi-

cating the likelihood that a point belongs to different clusters;

in this way, when data of trajectories of varying size particles

need to be analyzed, we may discover underlying motion pat-

terns, segment particle trajectories into meaningful clusters,

and analyze complex, overlapping trajectories in a probabilis-

tic and flexible manner. Therefore, the study by Christakis et

al.16 was expanded to include, with the aid of GMMs, an anal-

ysis of phenomena in all three spatial directions individually,

following the initial identification of dominant clusters by the

RUN-ICON algorithm.

The paper is organized as follows. Section II discusses

COVID-19 spreading and infection in enclosed spaces and

refers to how the data were collected using CFD models. In

Section III, the RUN-ICON algorithm is briefly described.

Section III introduces the stochastic GMMs and presents the

coupling methodology between RUN-ICON and GMM. The

results are presented in Section V. The conclusions drawn

from this study are summarized in Section VI.

II. MOTIVATION

The recent COVID-19 pandemic, with more than 770×106

confirmed cases and nearly 7×106 deaths18, has underscored

the critical need for rigorous and urgent studies on virus trans-

mission. Understanding how droplets and aerosols expelled

by infected individuals spread and infect others has become

paramount in devising effective mitigation strategies.

This urgency has spurred extensive research into virus

transmission in enclosed spaces.4,5,19–24 These studies have

explored air filtration, air purification, and the efficacy of

high-efficiency particulate air (HEPA) filters designed to cap-

ture more than 99% of particles. They also provide high ven-

tilation rates with a mix of 50% fresh air and 50% filtered

air, achieving more than 20 air changes per hour (ACH) in a

space.25 ACH refers to the number of times the air in a room

can be completely renewed in one hour based on the venti-

lation system’s volumetric flow rate and the room’s volume.

However, this is an indicative value, as factors like flow recir-

culation, room geometry, and the placement of ventilation in-

lets and outlets can significantly affect air renewal time. These

studies have demonstrated the inevitability of virus transmis-

sion when individuals are close.

Additionally, recent research has focused on aerosol trans-

mission and ventilation configurations in car cabins26,27 and

buses28,29. Studies on virus transmission on cruise ships have

mainly involved mechanistic modeling30 and outbreak data

analysis.31 A comprehensive review of COVID-19 transmis-

sion on cruise ships32 highlighted that high occupancy cabins

pose an increased transmission risk. However, it did not ex-

tensively discuss the impact of cabin ventilation systems on

transmission dynamics.

CFD studies with ventilation recommendations have so far

been limited to smaller vessels.33 The literature presents con-

flicting views on the recirculation of potentially contaminated

air and the efficiency of ventilation rates on cruise ships.

While Azimi et al.30 recommended high ventilation rates in

cruise ship cabins, opinions vary among researchers.34–37

Current standards and guidelines for room safety regard-

ing airborne virus transmission emphasize high air exchange

rates.38–40 However, maintaining these high rates can be

energy-intensive and may reduce comfort due to strong air
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drafts. The American Society of Heating, Refrigerating and

Air-conditioning Engineers (ASHRAE) Standard40,41 pro-

vides a formula for calculating the minimum ventilation rate

based on the number of occupants and the surface area

of a room: Q̇outdoor−air = Rp × Np + Ra × A. Here,

Q̇outdoor−air is the required outdoor air supply, Rp is the

required outdoor flow rate per person, and Ra is the required

outdoor flow rate per unit area, with Rp = 2.5;ℓ/(s· person)

and Ra = 0.3;ℓ/(s ·m2). For a cabin with two occupants, this

translates to 27 m3/h. Designers of cruise ships have pro-

posed stricter ventilation limits of 30 m3/h per room occu-

pant. Recommendations from the World Health Organization

(WHO)42, the European Federation of HVAC Associations43,

and other research studies44 suggest 36 m3/h per person. The

Federal Public Service (FPS) Health, Food Chain Safety and

Environment of Belgium has set a slightly higher standard of

40 m3/h per person.45

Considering these guidelines, the reference flow rate value

for a small cruise cabin with two occupants is 60 m3/h.

The latest Centers for Disease Control and Prevention (CDC)

guidelines, based on the draft of ASHRAE Standard 241-

202340, and other studies46, propose a minimum of 5 ACH,

translating to a flow rate of 200 m3/h for the cabin under

investigation. ASHRAE Standard 241-202340 recommends

15 l/s per occupant, equating to 108 m3/h for the studied

cabin. Based on CDC data, a typical home has less than 0.5

ACH, while ASHRAE Standard (62.2-2019)47 recommends

0.35 ACH.

FIG. 1. The simulation domain used in the CFD simulations with the

three directions (lateral x, streamwise y, and vertical z) depicted. The

width of the room (x−direction) is 2.8 m, its length (y−direction)

is 5.92 m and its height z−direction) is 2.4 m. The location of the

coughing person is also shown, as well as the ventilation inlets and

outlets.

A typical cruise ship cabin was considered, with details

available in Ritos et al.48 Figure 1 presents the simulation do-

main, where the three x−, y− and z− axes are depicted. The

cabin height is 2.4 m, with the overall deck height of the ship

being 2.8 m. A standard air conditioning unit is placed at the

cabin’s center with a square outlet (□48 cm) and four rectan-

gular inlets (55×5 cm×cm each) that expel air at an angle of

45o. The coughing person is placed under the air conditioning

unit. The bathroom area has an additional circular outlet (∅25

cm). The CFD simulations used polyhedral non-uniform cells

(≈ 0.6×106), with significant refinement in all inlet and out-

let regions. For example, at the mouth and up to a distance of

0.5 m in the streamwise direction, the cells have a maximum

isotropic size of 4 mm compared to the overall targeted cell

size of 4 cm. Enhanced quality triangles were used for the

surface meshing method and 5 core mesh optimization cycles

with a quality threshold of 0.6 for the entire mesh. The most

significant volume change was 0.01 in less than 2% of the

cells, while the mesh had 100% face validity. The maximum

skewness angle was 86.5o. The choice of this mesh has been

taken after conducting a mesh convergence study on main lo-

cal and global flow parameters, like the cabin’s average tem-

perature (Tavg), relative humidity (RH), momentum and mass

conservation of the fluid.

No-slip boundary conditions have been applied to all walls,

the ceiling, the floor, and the person’s body. Outlet boundary

conditions with a specified mass flow rate have been used in

the air outlets, with 1/3 of the flow directed to the bathroom

outlet and the rest to the A/C outlet, leading to a pressure bal-

ance in the cabin. The air inlets provide the overall targeted

mass flow rate with the air blowing at an angle of 45o. Further

details can be found in.48

Since the air outlets are along the y−axis, the direction

along that axis is considered as streamwise and the one along

the x−axis as lateral. The z−axis defines the vertical di-

rection, along which gravity acts. Data from this configu-

ration are used in the present work. The effect of droplet

evaporation, highlighted in review papers49, has also been in-

cluded. Dhand and Li50 emphasized the role of droplets in

virus spread and the significance of evaporation and size alter-

ation. Recently, it has been shown that droplets can spread up

to five times more when high ventilation rates are used after a

person coughs.48 CFD simulations of coughing events at vary-

ing flow rates were performed, with particles of different sizes

tracked in their trajectories. The initial conditions and param-

eters for the simulations were set to replicate realistic cough-

ing scenarios. Data from this study for a typical cabin venti-

lation rate of 120 m3/h were utilized for the presented work.

Further details on the data are provided in16. colour black

Note the CFD simulations always encompass assumptions re-

garding initial conditions, but in the present study, we aimed

to minimize the uncertainty by introducing realistic data about

the room’s ventilation and physical modelling employed to

perform the simulations.
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III. DOMINANT CLUSTERS IDENTIFICATION WITH
RUN-ICON

In this study, the RUN-ICON algorithm is initially utilized

to determine the optimal number of clusters at different times

of droplet dispersion.14 RUN-ICON’s main advantage over

other UL techniques is its systematic approach to determining

the optimal number of clusters, reducing reliance on subjec-

tive judgments. Instead of relying on the Sum of Squared Er-

rors, RUN-ICON introduces novel metrics such as the Cluster-

ing Dominance Index (CDI) and Uncertainty to identify com-

monly dominant centers across multiple repetitions of the K-

means++ algorithm. CDI represents the frequency of occur-

rence of specific clustering configurations, while Uncertainty

measures the relative difference between upper and lower CDI

bounds. By focusing on stability, RUN-ICON ensures that

the chosen cluster centers accurately represent underlying pat-

terns, mitigating the influence of outliers or noisy data points.

This leads to more robust and interpretable clustering results,

with the algorithm demonstrating an accuracy of 97% in iden-

tifying intended clustering configurations, significantly out-

performing other algorithms14,15. This makes RUN-ICON

particularly suitable for complex scenarios like particle-like

dispersion and various realistic flow applications. It is also

important to note that RUN-ICON makes no numerical as-

sumptions. The steps of the algorithm are as follows:

1. Specify a particular number of clusters and perform the

K-means++ clustering algorithm 100 times.

2. Compute the coordinates of the cluster centres after ev-

ery run.

3. Compare the cluster centre coordinates from all 100

runs to identify the coordinates that appear most fre-

quently.

4. Select the cluster centers that exhibit the highest fre-

quency of appearance as the dominant centers corre-

sponding to the chosen number of clusters and calculate

CDI.

5. Repeat the preceding steps (steps 1-4) nine more times

to obtain ten sets of dominant cluster centres.

6. Compute the average frequency of appearance for the

dominant centers and their respective CDIs, derived

from the ten repetitions, ensuring that they correspond

to the same clustering centers. Calculate these metrics’

upper and lower bounds and assess the variance within

this range.

7. Repeat steps 1-6 for various cluster numbers, beginning

with 3 clusters and extending up to 10 clusters.

8. Choose the cluster number with the highest average

CDI and low variance (less than 30%) as the optimal

number of clusters for the RUN-ICON algorithm.

(a)

(b)

FIG. 2. Clustering of particles at time 0.12 s from the start of the

coughing event in the lateral direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

IV. STOCHASTIC MODELING - MATHEMATICAL
THEORY

GMM is a versatile probabilistic tool for clustering that

can enhance the initial results obtained from any clustering

algorithm.51–53 Incorporating GMMs into UL algorithms sig-

nificantly improves prediction accuracy and provides deeper

insights into complex data sets. GMMs are particularly valu-

able in unsupervised learning due to several key benefits:

1. Modeling data distributions: GMMs model data as a

mixture of several Gaussian distributions, ideal for cap-

turing the inherent sub-populations within a data set.54

This capability leads to a better understanding of the

data structure, which is often necessary for accurate

predictions in complex domains, such as virus transmis-

sion dynamics.

2. Flexibility and adaptability: Unlike more straightfor-

ward clustering methods, GMMs can handle clusters of

different shapes and sizes.55 This flexibility is crucial
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(a)

(b)

FIG. 3. Clustering of particles at time 2 s from the start of the cough-

ing event in the lateral direction. The x−axis is the particle diameter

in µm, and the y−axis is the distance from the mouth in m. The

red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

when dealing with real-world data, which often exhibits

varied distributions. By adapting to the underlying data

distribution more effectively, GMMs may improve the

robustness of UL algorithms.

3. Probabilistic framework: GMMs provide a proba-

bilistic approach to clustering, where each data point

is assigned a probability of belonging to each cluster.56

This probabilistic framework is beneficial for han-

dling uncertainties and ambiguities in data classifica-

tion, making GMMs well-suited for applications where

precision is critical, such as predicting virus transmis-

sion pathways.

4. Enhanced interpretability: By representing data as a

combination of Gaussian distributions, GMMs offer a

more interpretable framework for understanding the un-

derlying patterns and structures within the data.57 This

interpretability is essential for validating and explaining

the results of UL algorithms, particularly in scientific

applications where transparency and explainability are

(a)

(b)

FIG. 4. Clustering of particles at time 4 s from the start of the cough-

ing event in the lateral direction. The x−axis is the particle diameter

in µm, and the y−axis is the distance from the mouth in m. The

red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

paramount.

5. Integration with other methods: GMMs can be eas-

ily integrated with other ML techniques and domain-

specific models.58,59 This will allow for a more com-

prehensive data analysis by exploiting the strengths of

all approaches involved, leading to more accurate and

reliable predictions.

6. Handling multimodal data: Real-world data often ex-

hibit multimodal distributions, with multiple subgroups

or modes present within a single dataset. GMMs are

particularly adept at handling such multimodal data, as

they can identify and model each mode separately.60

This ability is crucial for accurately capturing the com-

plexity of virus transmission processes and other intri-

cate phenomena.

All these benefits make GMMs a powerful tool for improv-

ing the predictions and insights derived from UL, particu-

larly in complex and high-stakes applications such as virus

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
2
9
1
1
1



6

(a)

(b)

FIG. 5. Clustering of particles at time 8 s from the start of the cough-

ing event in the lateral direction. The x−axis is the particle diameter

in µm, and the y−axis is the distance from the mouth in m. The

red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

transmission studies. This section details how GMM is uti-

lized to refine clusters based on the centers identified by a

different clustering algorithm. It is well known, for exam-

ple, that the K-means algorithm separates into clusters, mostly

of spherical shape and almost equal size, which can be a

limitation.61 GMM addresses this by modeling the data as

a combination of Gaussian distributions, each with its mean

and covariance. In the present work, we show how to utilize

GMM to improve clustering results initially generated by the

RUN-ICON algorithm.14 By using the dominant cluster cen-

ters from RUN-ICON as starting points for GMM, we achieve

more precise and reliable clustering. All relevant equations

are presented, and an implementation guide is provided. It

has to be noted that the number of dominant clusters does not

change every time, and it remains as predicted through RUN-

ICON.

(a)

(b)

FIG. 6. Clustering of particles at time 0.12 s from the start of the

coughing event in the streamwise direction. The x−axis is the par-

ticle diameter in µm, and the y−axis is the distance from the mouth

in m. The red vertical line at 5 µm indicates the threshold between

droplets and aerosols. (a) RUN-ICON predicts clustering, and (b)

clusters are redistributed as predicted by GMM. Each colour indi-

cates droplets belonging to the same cluster.

A. Setting up the framework

The GMM assumes that data points come from a mixture of

multiple Gaussian distributions.17 Suppose we have a dataset

of N data points x that has already been separated into K dif-

ferent clusters. For each cluster, a mean µk (a 1×n matrix) is

defined, each element of which is:

µk j =
∑

Nk
i=1 xk

i j

Nk

(1)

where:

• k ∈ [1, ...,K]

• µk j is the j-th element of matrix µk ( j ∈ [1, ...,n]

• Nk is the number of points in cluster k.

• xk
i j is the j-th coordinate of a point that belongs to clus-

ter k
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(a)

(b)

FIG. 7. Clustering of particles at time 2 s from the start of the cough-

ing event in the streamwise direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

We also define for every cluster k an n× n covariance matrix

Σk as:

Σk =
1

Nk −1
(Xk

µ)
T Xk

µ (2)

where:

• Xk
µ is the Nk ×n matrix of all cluster-k points minus the

corresponding to each row µk component.

Then, we may define the Gaussian distribution for points x

belonging to cluster k as:

N (x|µk,Σk)=
1

(2π)n/2|Σk|1/2
exp

(

−
1

2
(x−µk)

T Σ−1
k (x−µk)

)

(3)

where

• |Σk| and Σ−1
k are the determinant and inverse of the co-

variance matrix, respectively.

(a)

(b)

FIG. 8. Clustering of particles at time 4 s from the start of the cough-

ing event in the streamwise direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

• (x−µk) is an n×1 vector, corresponding to the differ-

ence between point x and its respective component of

µk

We may also define a weight πk for each cluster, which indi-

cates the proportion of points belonging to that cluster, i.e.:

πk = Nk/N (4)

As becomes obvious ∑
K
k=1 πk = 1. Then, based on GMM, the

probability of a point xi from the dataset belonging to cluster

k is given by:

γik =
πkN (xi|µk,Σk)

∑
K
j=1 π jN (xi|µ j,Σ j)

(5)

For a complete derivation of this formula, the interested

reader is referred to the work by Reynolds.62
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(a)

(b)

FIG. 9. Clustering of particles at time 8 s from the start of the cough-

ing event in the streamwise direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

B. Expectation-Maximization (EM) Algorithm

We may now introduce the EM algorithm, which is em-

ployed to find the maximum likelihood estimates of the Gaus-

sian distributions for the clusters based on GMM. It iteratively

performs two steps: the Expectation (E) step and the Maxi-

mization (M) step.

• E-step During this step, we calculate the probability γik

that data point xi belongs to cluster k. For every point,

K probabilities for belonging to any of the K clusters

are calculated. A point is placed in a cluster based on

the highest probability score. This cluster could now be

different from the original cluster the point belonged to.

• M-step In this step, we redistribute points to clusters.

We update the means, covariance matrices and weights

for the new clusters of points, according to equations

(1), (2) and (4), respectively. The number of clusters K

remains the same, but the centers can change. The new

centres are defined by the new calculated means.

(a)

(b)

FIG. 10. Clustering of particles at time 0.12 s from the start of the

coughing event in the vertical direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

C. Implementation Steps

In this section, we detail the implementation of our method-

ology for the integration of RUN-ICON with GMM in three

distinct steps:

1. Initialization with RUN-ICON

The RUN-ICON algorithm is utilized to find the domi-

nant clustering, and the cluster centres, as determined

by the algorithm, are set as the initial means of the

GMM. The initial covariance matrices and weights are

also calculated through equations (2) and (4), respec-

tively.

2. EM algorithm

Execute the EM algorithm to refine the GMM parame-

ters:

• E-step: Calculate the probabilities γik for all points

to belong to any of the k clusters.
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(a)

(b)

FIG. 11. Clustering of particles at time 2 s from the start of the

coughing event in the vertical direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

• M-step: Redistribute points in K clusters based on

highest probability scores and recalculate µk, Σk,

and πk.

3. Check for convergence

To check for convergence, the previously and newly cal-

culated means are compared. If they are below the tol-

erance set by the user, the algorithm terminates. Other-

wise, we return to Step 2 and repeat.

Integrating RUN-ICON with GMM, we thus obtain a robust

clustering method that leverages RUN-ICON’s ability to form

dominant clustering identification and GMM’s flexibility for

modeling complex data distributions. The EM algorithm it-

eratively refines the parameters, leading to more precise and

dependable clustering outcomes. This dual approach helps

understand droplets’ nuanced behaviour over time and space.

(a)

(b)

FIG. 12. Clustering of particles at time 4 s from the start of the

coughing event in the vertical direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

V. RESULTS AND ANALYSIS

In the work by Christakis et al.16, where the RUN-ICON

algorithm was applied to the study of droplet spreading in

an enclosed space, no consideration was given to what was

occurring in each of the three spatial dimensions (i.e., lat-

eral, streamwise, and vertical) separately. Instead, the Eu-

clidean norms of the three-dimensional position vectors from

the mouth of a coughing person were considered. We utilize

the RUN-ICON algorithm in the present work to predict the

optimum cluster numbers. Then, we apply GMM to study

what occurs in all three spatial dimensions separately and to

examine whether the GMM model predicts different particle

classifications in the clusters. A typical ventilation rate of 120

m3/h was considered, with the person standing at the cabin’s

center underneath the air inlet, as shown in Figure 1. The

streamwise direction is along the y−axis, the lateral direc-

tion is along the x−axis, and the vertical direction is along

the z−axis.

Data from the CFD simulations mentioned in Section II for
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(a)

(b)

FIG. 13. Clustering of particles at time 8 s from the start of the

coughing event in the vertical direction. The x−axis is the particle

diameter in µm, and the y−axis is the distance from the mouth in m.

The red vertical line at 5 µm indicates the threshold between droplets

and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are

redistributed as predicted by GMM. Each colour indicates droplets

belonging to the same cluster.

Time (s) Number of Maximum Minimum

particles diameter (µm) diameter (µm)

0.12 146,400 108 19

2 146,334 102 1

4 144,676 95 0.3

8 116,875 82 0.6

TABLE I. Times after the start of the coughing event, number of

remaining particles and maximum-minimum diameters in the distri-

bution.

this particular ventilation rate were utilized. Several particles

were expelled and tracked in all three spatial dimensions four

times (0.12 s, 2 s, 4 s, and 8 s). At the final time of 8 s, ap-

proximately 117,000 particles remained (since the effects of

evaporation were considered), with diameters between 82 and

0.6 µm (see Table I). As can be seen, the evaporation rate ac-

celerates with time; a considerable amount of particles evapo-

rated in the last 4 s of the flow (27,801 particles), whereas in

the first 4 s, only 1,724 particles evaporated. The diameters

of particles, as expected, were reduced due to the effects of

Time (s) Optimum number of clusters

x−dir y−dir z−dir

0.12 5 3 5

2 3 3 3

4 4 3 3

8 3 3 3

TABLE II. Times after the start of the coughing event and optimum

number of clusters in each of the three directions.

evaporation. The individual was considered to cough along

the y−axis (streamwise), and the optimum numbers of clus-

ters, as RUN-ICON predicted for each of the three directions,

are given in Table II.

In the medical community, particles may be classified as

droplets or aerosols based on their sizes (particles with diam-

eters greater than 5 µm are classified as droplets. Otherwise,

they are classified as aerosols).63–65 This classification is cru-

cial, as droplets are considered more significant for viral load

transmission due to their larger sizes and, hence, the higher

viral load that they carry. In the present study, since evapo-

ration has been considered, we observed this distinction and

analyzed how many particles fall off the droplet size category

at all recorded times.

A. Lateral (x−) Direction

• Initial Time (0.12 s): RUN-ICON (Figure 2(a)) iden-

tified five clusters, symmetrically distributed on either

side of the coughing individual. The clustering was pre-

dominantly size-based, with larger particles showing a

higher initial momentum, resulting in similar travel dis-

tances.

The application of GMM (Figure 2(b)) revealed a dif-

ferent clustering pattern, indicating that particles of the

same size could travel varying distances. This suggests

variability in particle velocities, possibly due to inter-

actions among particles. The clusters formed by GMM

included three thin clusters around the origin and two

additional clusters, illustrating the velocity differences

among similarly sized particles.

• 2 s: RUN-ICON (Figure 3(a)) predicted three clusters,

with smaller particles forming a distinct cluster likely

due to the evaporation of smaller droplets. Larger par-

ticles were separated based on their position relative to

the coughing source, indicating similar travel distances

due to higher momentum. GMM (Figure 3(b)) showed

minimal changes, maintaining the clusters identified by

RUN ICON.

• 4 s: RUN-ICON (Figure 4(a)) identified four clusters,

with smaller particles gaining momentum and travel-

ing slightly further than larger particles. GMM (Figure

4(b)) retained the same clustering pattern, confirming

the initial analysis.
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• 8 s: RUN-ICON (Figure 5(a)) predicted three clusters,

with larger particles now traveling further than smaller

ones. GMM (Figure 5(b)) confirmed these findings,

showing similar particle distributions in the three clus-

ters.

In the lateral direction, particle travel distances did not

exceed 0.2 meters, making this direction less significant

than the other two dimensions.

B. Streamwise (y−) Direction

• Initial Time (0.12 s): RUN-ICON (Figure 6(a)) identi-

fied three clusters where both small and large particles

traveled similar distances, with intermediate particles

lagging. GMM (Figure 6(b)) maintained this cluster-

ing, indicating no significant alteration.

• 2 s: RUN-ICON (Figure 7(a)) predicted three clus-

ters, with smaller particles gaining momentum while

larger particles lagged slightly, likely due to interactions

among larger particles. GMM (Figure 7(b)) showed

similar cluster formations, supporting the initial results.

• 4 s: RUN-ICON (Figure 8(a)) identified three clusters

with larger particles overtaking smaller ones. GMM

(Figure 8(b)) confirmed these clusters with no signifi-

cant changes.

• 8 s: RUN-ICON (Figure 9(a)) predicted three clusters,

with smaller particles now overtaking larger ones, as

larger particles settled closer to the floor and were less

influenced by the airflow. GMM (Figure 9(b)) main-

tained the same clustering, showing consistent patterns.

As observed, particles in the streamwise direction did

not travel beyond 1.2 meters from the mouth, with the

predicted distribution by GMM remaining consistent.

C. Vertical (z−) Direction

• Initial Time (0.12 s): RUN-ICON (Figure 10(a)) iden-

tified five clusters, with particles distributed above and

below the line defining the streamline direction. This

behavior mirrored the lateral direction due to initial par-

ticle dynamics. GMM (Figure 10(b)) exhibited similar

clustering to the initial time in the lateral direction (Fig-

ure 2(b)), suggesting variability in particle velocities,

possibly due to interactions among particles due to their

close packing.

• 2 s: RUN-ICON (Figure 11(a)) predicted three clusters,

with gravity significantly influencing larger particles,

driving them towards the ground. GMM (Figure 11(b))

maintained this trend, showing similar clusters.

• 4 s: RUN-ICON (Figure 12(a)) identified three clusters,

with an increased slope between large and small par-

ticles, indicating faster downward movement of larger

particles. GMM (Figure 12(b)) confirmed this pattern,

showing consistent clustering.

• 8 s: RUN-ICON (Figure 13(a)) predicted three clus-

ters, with 97% of the particles having fallen at least 1 m

below mouth level and larger particles having already

settled on the floor. GMM (Figure 13(b)) slightly al-

tered this clustering by gathering together in a cluster

all particles that had already settled on the floor (ap-

proximately 27% of the distribution).

In the vertical direction, the separation seems to be primarily

size-driven, with larger particles gaining momentum due to

gravity and thus traveling faster than smaller ones.

D. Droplet-aerosol separation

The presented data shows that a significant amount of par-

ticles evaporates entirely within the time scale of 8 s (approx-

imately 21%). However, this only occurs during the latter

stages of the flow; within the first 4 s, less than 2% of par-

ticles from the initial distribution have evaporated.

As for the droplet-aerosol separation, it may be observed

that at 2 s, much less than 1% of particles are below the 5

µm threshold (56 out of approximately 146,000). The num-

ber of particles below 5 µm remains relatively small even af-

ter 4 s (62 particles out of roughly 144,000). Only after 8 s

does this number rise to approximately 0.6% of the particle

size distribution, which is a tiny percentage of the distribu-

tion. Hence, we may conclude that by the end of the flow, the

rate of smaller particles-aerosols in the particle size distribu-

tion is insignificant and has no critical effect on lowering virus

transmission.

E. Comparisons with other works

In recent years, there have been limited studies where par-

ticle dispersion with airflow in indoor spaces has been mod-

eled by utilizing CFD.24,66,67 To the best of our knowledge,

there are no studies in the literature that combine CFD with

UL techniques, to extract patterns of particle dispersion in en-

closed spaces, such as hospital rooms, ship cabins, etc. Hence,

direct comparisons between the findings of the current study

and past works are not feasible for several reasons:

• Traditional CFD studies focus on modeling airflow and

particle trajectories under specific conditions, but they

may not delve deeply into identifying underlying pat-

terns in particle behavior. By incorporating clustering

with the aid of UL and GMMs, the proposed method

goes beyond merely tracking particle movement; it dis-

cerns intricate patterns in dispersion, clustering parti-

cles based on their properties and interactions. This

level of analysis provides insights that standard CFD

might not capture, particularly in understanding how

different particles behave as a collective over time.
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• The use of GMMs allows us to uncover hidden struc-

tures within the particle dispersion data. This approach

can reveal complex, non-linear relationships in the data

that CFD models, which rely on deterministic equa-

tions, might overlook. The resulting clusters can indi-

cate different dispersion regimes or patterns that are not

readily apparent in a conventional CFD analysis.

• Our approach integrates data from multiple spatial and

temporal dimensions, providing a more holistic view of

particle dispersion. Traditional CFD studies might an-

alyze these dimensions separately or focus on a partic-

ular aspect, such as airflow patterns, without fully inte-

grating them to discern broader patterns. By contrast,

our method can simultaneously analyze these dimen-

sions to identify clusters that reflect real-world particle

behavior more accurately.

• By identifying clusters representing different dispersion

behaviour, our method could improve the accuracy of

predictions about where particles will travel under var-

ious conditions. Traditional CFD models might predict

average behavior well. Still, our method’s ability to

identify specific clusters allows for more precise pre-

dictions, particularly in complex environments like a

hospital room or a cruise ship cabin, where airflow and

particle interactions can be highly variable.

Our method significantly advances traditional CFD ap-

proaches by integrating unsupervised and stochastic cluster-

ing techniques. This combination allows us to identify and

analyze complex patterns in particle dispersion that traditional

CFD studies might miss. Because of our approach’s enhanced

analytical depth, multidimensional integration and adaptive

nature, direct comparisons with conventional CFD studies are

not straightforward. Instead, our method should be seen as a

more sophisticated tool that provides more profound and more

precise insights into the dynamics of particle dispersion, espe-

cially in complex environments.

VI. CONCLUSIONS

In this study, CFD data were analyzed with the aid of Un-

supervised Machine Learning to study airflow dynamics in a

cruise ship cabin where a coughing individual was present.

The trajectories of emitted droplets of different sizes were

recorded in all three spatial dimensions. A typical ventila-

tion rate was employed. Initially, the RUN-ICON algorithm

was used to determine the optimum clustering configuration.

Then, GMM was utilized to introduce stochasticity and ac-

count for the probabilistic nature of virus transmission dynam-

ics.

The primary directions of particle dispersion are the stream-

wise (y−) and vertical (z−) directions, influenced by the air-

flow and gravity, respectively. The maximum lateral (x−) dis-

tance is approximately 12-13% of the distances covered in the

other two directions. As particles disperse, evaporation re-

duces their number by approximately 21%, and by the end of

the flow, only about 0.6% of particles fall below the 5 µm

threshold.

In most cases, RUN-ICON results were not altered signif-

icantly by applying GMM, especially when the flow was pri-

marily in one direction (i.e., streamwise and lateral). Signifi-

cant differences were observed only at the initial stages when

particles moved with similar velocities in multiple directions.

The clustering seems to be size-based and reflects the dynam-

ics of the flow. The similarity in clusters produced by both

RUN-ICON and GMM indicated predictable patterns in par-

ticle dispersion, with smaller particles traveling further due to

their ability to stay suspended in the air longer. This is partic-

ularly relevant for understanding the spread of airborne par-

ticles, such as respiratory emissions, where smaller particles

could remain airborne and travel longer distances, potentially

increasing the risk of transmission in enclosed spaces.

• Lateral direction: As mentioned, this is the less signifi-

cant direction, with particles dispersing on either side of

the mouth but without travelling substantial distances.

• Streamwise direction: Initially, smaller particles moved

faster, with larger particles catching up later. How-

ever, since the larger particles reached the floor faster,

they lost momentum, which enabled smaller particles to

move further away in the streamwise direction. How-

ever, no particles reached a distance greater than 1.2 m

from the mouth in that direction.

• Vertical direction: In this direction, the separation

seemed to be size-based directly from the start due to

gravity. By the final time of 8 s, almost all particles

(97%)) were at a vertical distance below 1 m from the

mouth.

The combination of RUN-ICON with GMMs in this study

offers a robust framework for analyzing complex particle dy-

namics. RUN-ICON effectively identifies critical clusters

within the data, providing a solid base that GMMs can use

to model the underlying distributions more precisely. This

integration enables a more detailed and probabilistic charac-

terization of particle dispersion, capturing subtle variations

and sub-populations within the trajectories. Consequently,

this approach enhances the results’ accuracy and interpretabil-

ity, making it particularly useful for applications like mod-

eling virus transmission in enclosed environments. As uti-

lized in this work, the dual-method approach highlights the

importance of considering initial conditions and dynamic in-

teractions among particles to understand their dispersion ac-

curately. Moreover, the present study provides insights into

the behavior of respiratory droplets and aerosols, which are

crucial for developing effective mitigation strategies in con-

trolling airborne disease transmission.

The proposed combination of RUN-ICON for identifying

potential cluster centre and their refinement with GMM can

be an effective approach in various research areas, including

beyond classical fluid dynamics, such as:

• Air quality analysis: Clustering data from various sen-

sors to identify patterns and sources of air pollution.
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• Wildlife monitoring: Analyzing sensor data to track an-

imal movements and identify species in diverse habi-

tats.

• Anomaly detection in transactions: Detecting unusual

patterns in financial transactions that might indicate

fraud or other anomalies.

• Market segmentation: Identifying different segments of

customers based on their purchasing behavior or finan-

cial activities.

• Network intrusion detection: Modeling regular network

traffic and identifying deviations that may indicate se-

curity breaches.

• Malware classification: Clustering software behaviors

to identify new or evolving malware strains.

In these scenarios, the approach of utilizing RUN-ICON to

find initial cluster centers before applying GMM can help to:

• Improve the accuracy of the GMM by providing it with

a better initial estimate of cluster centers.

• Reduce the complexity of GMM fitting by starting with

a more manageable number of well-defined clusters.

• Enhance interpretability by providing a clearer structure

and distribution of the data.

This combination can leverage the strengths of both ap-

proaches, leading to more robust and insightful models in

these diverse research areas.
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