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Understanding the dispersion of particles in enclosed spaces is crucial for controlling the spread of infectious diseases.
This study introduces an innovative approach that combines an unsupervised learning algorithm with a Gaussian mix-
ture model to analyze the behavior of saliva droplets emitted from a coughing individual. The algorithm effectively
clusters data, while the Gaussian mixture model captures the distribution of these clusters, revealing underlying sub-
populations and variations in particle dispersion. Using computational fluid dynamics simulation data, this integrated
method offers a robust, data-driven perspective on particle dynamics, unveiling intricate patterns and probabilistic dis-
tributions previously unattainable. The combined approach significantly enhances the accuracy and interpretability of
predictions, providing valuable insights for public health strategies to prevent virus transmission in indoor environ-
ments. The practical implications of this study are profound, as it demonstrates the potential of advanced unsupervised
learning techniques in addressing complex biomedical and engineering challenges and underscores the importance of
coupling sophisticated algorithms with statistical models for comprehensive data analysis. The potential impact of these
findings on public health strategies is significant, highlighting the relevance of this research to real-world applications.

I. INTRODUCTION

Detecting early signs of virus carriers and examining virus
transmission dynamics through the air during coughing and
sneezing in indoor environments is essential for reducing the
impact on public health. In pathogens research, limiting fac-
tors included the irreproducibility of in-vitro studies in in-
vivo contexts due to the complexity of physiological pro-
cesses and the behavior of genetically modified tissues.' His-
torically, mathematical models have been pivotal in address-
ing these issues, but they involve computationally expensive
simulations.”’ Performing multi-phase computational fluid
dynamics (CFD) simulations for virus transmission through
the air has provided significant insights,™”. Still, in a three-
dimensional space, it can be computationally expensive. Fur-
thermore, installing sensors indoors to monitor particles and
environmental conditions on a large scale could be technically
challenging. Developing methods to reduce the computational
and experimental burden could provide a promising alterna-
tive.

Studying particle dispersion in enclosed spaces is essential
for several reasons beyond the context of COVID-19. One
significant aspect is indoor air quality. This involves under-
standing the dynamics of how particles disperse, which can
help assess the health risks associated with indoor air pollu-
tants, such as dust, allergens, and volatile organic compounds.
Additionally, insights into particle movement can inform the
design of ventilation systems to improve air quality and re-
duce exposure to harmful particles.

Regarding occupational safety, studying particle dispersion
is crucial for managing exposure to workplace hazards, such
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as chemical fumes or fine particulates in industrial settings. It
also ensures regulatory compliance by keeping particle levels
within safe limits, often a legal requirement. From an envi-
ronmental control perspective, controlling particle dispersion
is essential in laboratories or clean rooms to prevent contam-
ination of sensitive processes or products. Moreover, the po-
tential for optimizing airflow and filtration systems based on
particle dispersion studies to lead to more energy-efficient en-
vironmental control systems is a reason for optimism about
the future.

In public health, understanding how particles, including
pathogens, disperse is a critical piece of knowledge in manag-
ing the spread of airborne diseases beyond COVID-19. This
knowledge is also invaluable for emergency preparedness,
aiding in the development of effective response strategies in
the event of a biological or chemical threat. The urgency of
our research is underscored by the importance of understand-
ing how particles disperse in managing the spread of airborne
diseases.

Finally, in building design and architecture, properly man-
aging particle dispersion is not just a technical consideration
but a key factor in ensuring occupants’ overall comfort and
well-being. It also supports sustainable practices by reducing
the need for excessive air filtration and conditioning. These
considerations highlight the broad relevance of particle dis-
persion studies, which draw on principles from physics, en-
gineering, and public health in promoting health, safety, and
efficiency in enclosed spaces.

Machine Learning (ML) can reveal hidden patterns within
noisy or incomplete data.”"” Unsupervised Learning (UL), in
particular, has achieved significant success across various sci-
entific domains, especially for complex problems involving
data set grouping. These problems range from deciphering
complex genetic structures'’ and understanding natural lan-
guage semantics'' to discovering astronomical phenomena'?,
among other applications. UL is advantageous because it
can handle unlabelled data, including experimental, compu-
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tational, or field measurements, without user intervention.
This capability is particularly relevant given the persistent
gaps in our understanding of the physics underlying vari-
ous processes, such as virus transmission. Several UL algo-
rithms have been developed.'*~'> However, UL in engineer-
ing, physics, and biomedical applications encompasses higher
uncertainty due to the elusive nature of underlying physical
processes.'” Unlike general data sets in economics, market-
ing, or media, pattern classification and prediction in fluid me-
chanics and engineering must be physics-relevant and explain-
able. Simplicity in ML algorithms is also essential to facilitate
explainability and broader application with confidence.

Recent advancements in UL, such as the Reduce UNcer-
tainty and Increase CONfidence (RUN-ICON) algorithm'*,
have further expanded its applicability. This state-of-the-
art algorithm has demonstrated effectiveness in reliably clus-
tering artificially generated and real-world data. Applying
the RUN-ICON algorithm to physics-based data produced
by CFD can provide invaluable insights into the behavior of
saliva droplets and aerosols emitted from coughing or sneez-
ing. This analysis offers a data-driven perspective on virus
transmission dynamics that was previously unattainable. It
has only been very recently that combining UL and CFD in
particle-driven dynamics has been attempted.'® This combina-
tion offers a promising avenue for advancing our understand-
ing in an era where precision and rapid response to emerging
infectious diseases are paramount. This study is motivated by
the potential of gaining better insight into particle dispersion
through the air by incorporating a stochastic Gaussian Mixture
Model (GMM) into the UL methodology. GMMs are used to
model data distribution by representing it as a mixture of sev-
eral Gaussian distributions, allowing for the identification of
underlying sub-populations within the data.'’

While UL effectively uncovers hidden patterns in unlabeled
data, it often struggles to accurately model the complex, mul-
timodal distributions commonly found in large datasets. On
the other hand, GMMs, known for their ability to represent
such distributions, require a robust method for initial pattern
identification and clustering. By combining UL with GMMs,
we can harness the exploratory power of UL to detect pat-
terns without prior labels and then refine these patterns into
a probabilistic framework using GMMs. This integrated ap-
proach is particularly crucial for analyzing complex data, such
as particle trajectories, where traditional clustering methods,
with their inherent limitations, fail to capture the full dynam-
ics. Our study demonstrates that the synergy between UL and
GMMs enables a more comprehensive and insightful analysis,
offering a depth of understanding that can not be attained with
either method alone.

By utilizing GMMs, we aim to enhance clustering and anal-
ysis capabilities, providing a deeper understanding of virus
transmission dynamics based on the probabilistic nature of
such events. This means that instead of assigning a data point
to a single cluster, GMMs provide a more subtle view by indi-
cating the likelihood that a point belongs to different clusters;
in this way, when data of trajectories of varying size particles
need to be analyzed, we may discover underlying motion pat-
terns, segment particle trajectories into meaningful clusters,

and analyze complex, overlapping trajectories in a probabilis-
tic and flexible manner. Therefore, the study by Christakis et
al.'® was expanded to include, with the aid of GMMs, an anal-
ysis of phenomena in all three spatial directions individually,
following the initial identification of dominant clusters by the
RUN-ICON algorithm.

The paper is organized as follows. Section II discusses
COVID-19 spreading and infection in enclosed spaces and
refers to how the data were collected using CFD models. In
Section [1I, the RUN-ICON algorithm is briefly described.
Section I1I introduces the stochastic GMMs and presents the
coupling methodology between RUN-ICON and GMM. The
results are presented in Section V. The conclusions drawn
from this study are summarized in Section V1.

1. MOTIVATION

The recent COVID-19 pandemic, with more than 770 x 100
confirmed cases and nearly 7 x 10° deaths'®, has underscored
the critical need for rigorous and urgent studies on virus trans-
mission. Understanding how droplets and aerosols expelled
by infected individuals spread and infect others has become
paramount in devising effective mitigation strategies.

This urgency has spurred extensive research into virus
transmission in enclosed spaces.*>'°~* These studies have
explored air filtration, air purification, and the efficacy of
high-efficiency particulate air (HEPA) filters designed to cap-
ture more than 99% of particles. They also provide high ven-
tilation rates with a mix of 50% fresh air and 50% filtered
air, achieving more than 20 air changes per hour (ACH) in a
space.”> ACH refers to the number of times the air in a room
can be completely renewed in one hour based on the venti-
lation system’s volumetric flow rate and the room’s volume.
However, this is an indicative value, as factors like flow recir-
culation, room geometry, and the placement of ventilation in-
lets and outlets can significantly affect air renewal time. These
studies have demonstrated the inevitability of virus transmis-
sion when individuals are close.

Additionally, recent research has focused on aerosol trans-
mission and ventilation configurations in car cabins’®”’ and
buses’®””. Studies on virus transmission on cruise ships have
mainly involved mechanistic modeling®” and outbreak data
analysis.”! A comprehensive review of COVID-19 transmis-
sion on cruise ships®” highlighted that high occupancy cabins
pose an increased transmission risk. However, it did not ex-
tensively discuss the impact of cabin ventilation systems on
transmission dynamics.

CFD studies with ventilation recommendations have so far
been limited to smaller vessels.”’ The literature presents con-
flicting views on the recirculation of potentially contaminated
air and the efficiency of ventilation rates on cruise ships.
While Azimi et al.”’ recommended high ventilation rates in
cruise ship cabins, opinions vary among researchers.”*’

Current standards and guidelines for room safety regard-
ing airborne virus transmission emphasize high air exchange
rates.”**" However, maintaining these high rates can be
energy-intensive and may reduce comfort due to strong air
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drafts. The American Society of Heating, Refrigerating and
Air-conditioning Engineers (ASHRAE) Standard*’*!' pro-
vides a formula for calculating the minimum ventilation rate
based on the number of occupants and the surface area
of a room: Qoutdoor —air = R, x N, + Ry x A. Here,
Qoutdoor — air is the required outdoor air supply, R, is the
required outdoor flow rate per person, and R, is the required
outdoor flow rate per unit area, with R, = 2.5;¢/(s- person)
and R, = 0.3;¢/(s-m?). For a cabin with two occupants, this
translates to 27 m?/h. Designers of cruise ships have pro-
posed stricter ventilation limits of 30 m3/h per room occu-
pant. Recommendations from the World Health Organization
(WHO)*, the European Federation of HVAC Associations*’,
and other research studies** suggest 36 m>/h per person. The
Federal Public Service (FPS) Health, Food Chain Safety and
Environment of Belgium has set a slightly higher standard of
40 m3 /h per person.”

Considering these guidelines, the reference flow rate value
for a small cruise cabin with two occupants is 60 m?/h.
The latest Centers for Disease Control and Prevention (CDC)
guidelines, based on the draft of ASHRAE Standard 241-
2023*", and other studies*®, propose a minimum of 5 ACH,
translating to a flow rate of 200 m?/h for the cabin under
investigation. ASHRAE Standard 241-2023*" recommends
15 1/s per occupant, equating to 108 m?3/h for the studied
cabin. Based on CDC data, a typical home has less than 0.5
ACH, while ASHRAE Standard (62.2-2019)"’ recommends
0.35 ACH.

Air outlets

Airinlets

FIG. 1. The simulation domain used in the CFD simulations with the
three directions (lateral x, streamwise y, and vertical z) depicted. The
width of the room (x—direction) is 2.8 m, its length (y—direction)
is 5.92 m and its height z—direction) is 2.4 m. The location of the
coughing person is also shown, as well as the ventilation inlets and
outlets.

A typical cruise ship cabin was considered, with details

available in Ritos et al.** Figure | presents the simulation do-

main, where the three x—, y— and z— axes are depicted. The
cabin height is 2.4 m, with the overall deck height of the ship
being 2.8 m. A standard air conditioning unit is placed at the
cabin’s center with a square outlet ((J48 cm) and four rectan-
gular inlets (55 x 5 cmxcm each) that expel air at an angle of
45°. The coughing person is placed under the air conditioning
unit. The bathroom area has an additional circular outlet (225
cm). The CFD simulations used polyhedral non-uniform cells
(=~ 0.6 x 10°), with significant refinement in all inlet and out-
let regions. For example, at the mouth and up to a distance of
0.5 m in the streamwise direction, the cells have a maximum
isotropic size of 4 mm compared to the overall targeted cell
size of 4 cm. Enhanced quality triangles were used for the
surface meshing method and 5 core mesh optimization cycles
with a quality threshold of 0.6 for the entire mesh. The most
significant volume change was 0.01 in less than 2% of the
cells, while the mesh had 100% face validity. The maximum
skewness angle was 86.5°. The choice of this mesh has been
taken after conducting a mesh convergence study on main lo-
cal and global flow parameters, like the cabin’s average tem-
perature (Tyyg), relative humidity (RH), momentum and mass
conservation of the fluid.

No-slip boundary conditions have been applied to all walls,
the ceiling, the floor, and the person’s body. Outlet boundary
conditions with a specified mass flow rate have been used in
the air outlets, with 1/3 of the flow directed to the bathroom
outlet and the rest to the A/C outlet, leading to a pressure bal-
ance in the cabin. The air inlets provide the overall targeted
mass flow rate with the air blowing at an angle of 45°. Further
details can be found in.**

Since the air outlets are along the y—axis, the direction
along that axis is considered as streamwise and the one along
the x—axis as lateral. The z—axis defines the vertical di-
rection, along which gravity acts. Data from this configu-
ration are used in the present work. The effect of droplet
evaporation, highlighted in review papers’’, has also been in-
cluded. Dhand and Li"’ emphasized the role of droplets in
virus spread and the significance of evaporation and size alter-
ation. Recently, it has been shown that droplets can spread up
to five times more when high ventilation rates are used after a
person coughs.*® CFD simulations of coughing events at vary-
ing flow rates were performed, with particles of different sizes
tracked in their trajectories. The initial conditions and param-
eters for the simulations were set to replicate realistic cough-
ing scenarios. Data from this study for a typical cabin venti-
lation rate of 120 m> /h were utilized for the presented work.
Further details on the data are provided in'®. colour black
Note the CFD simulations always encompass assumptions re-
garding initial conditions, but in the present study, we aimed
to minimize the uncertainty by introducing realistic data about
the room’s ventilation and physical modelling employed to
perform the simulations.
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11l.  DOMINANT CLUSTERS IDENTIFICATION WITH
RUN-ICON

In this study, the RUN-ICON algorithm is initially utilized
to determine the optimal number of clusters at different times
of droplet dispersion.'* RUN-ICON’s main advantage over
other UL techniques is its systematic approach to determining
the optimal number of clusters, reducing reliance on subjec-
tive judgments. Instead of relying on the Sum of Squared Er-
rors, RUN-ICON introduces novel metrics such as the Cluster-
ing Dominance Index (CDI) and Uncertainty to identify com-
monly dominant centers across multiple repetitions of the K-
means++ algorithm. CDI represents the frequency of occur-
rence of specific clustering configurations, while Uncertainty
measures the relative difference between upper and lower CDI
bounds. By focusing on stability, RUN-ICON ensures that
the chosen cluster centers accurately represent underlying pat-
terns, mitigating the influence of outliers or noisy data points.
This leads to more robust and interpretable clustering results,
with the algorithm demonstrating an accuracy of 97% in iden-
tifying intended clustering configurations, significantly out-
performing other algorithms'*'>. This makes RUN-ICON
particularly suitable for complex scenarios like particle-like
dispersion and various realistic flow applications. It is also
important to note that RUN-ICON makes no numerical as-
sumptions. The steps of the algorithm are as follows:

1. Specify a particular number of clusters and perform the
K-means++ clustering algorithm 100 times.

2. Compute the coordinates of the cluster centres after ev-
ery run.

3. Compare the cluster centre coordinates from all 100
runs to identify the coordinates that appear most fre-
quently.

4. Select the cluster centers that exhibit the highest fre-
quency of appearance as the dominant centers corre-
sponding to the chosen number of clusters and calculate
CDL

5. Repeat the preceding steps (steps 1-4) nine more times
to obtain ten sets of dominant cluster centres.

6. Compute the average frequency of appearance for the
dominant centers and their respective CDIs, derived
from the ten repetitions, ensuring that they correspond
to the same clustering centers. Calculate these metrics’
upper and lower bounds and assess the variance within
this range.

7. Repeat steps 1-6 for various cluster numbers, beginning
with 3 clusters and extending up to 10 clusters.

8. Choose the cluster number with the highest average
CDI and low variance (less than 30%) as the optimal
number of clusters for the RUN-ICON algorithm.
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FIG. 2. Clustering of particles at time 0.12 s from the start of the
coughing event in the lateral direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

IV. STOCHASTIC MODELING - MATHEMATICAL
THEORY

GMM is a versatile probabilistic tool for clustering that
can enhance the initial results obtained from any clustering
algorithm.”' = Incorporating GMMs into UL algorithms sig-
nificantly improves prediction accuracy and provides deeper
insights into complex data sets. GMMs are particularly valu-
able in unsupervised learning due to several key benefits:

1. Modeling data distributions: GMMs model data as a
mixture of several Gaussian distributions, ideal for cap-
turing the inherent sub-populations within a data set.”*
This capability leads to a better understanding of the
data structure, which is often necessary for accurate
predictions in complex domains, such as virus transmis-
sion dynamics.

2. Flexibility and adaptability: Unlike more straightfor-
ward clustering methods, GMMS can handle clusters of
different shapes and sizes.” This flexibility is crucial
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FIG. 3. Clustering of particles at time 2 s from the start of the cough-
ing event in the lateral direction. The x—axis is the particle diameter
in pum, and the y—axis is the distance from the mouth in m. The
red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

when dealing with real-world data, which often exhibits
varied distributions. By adapting to the underlying data
distribution more effectively, GMMs may improve the
robustness of UL algorithms.

3. Probabilistic framework: GMMs provide a proba-
bilistic approach to clustering, where each data point
is assigned a probability of belonging to each cluster.’
This probabilistic framework is beneficial for han-
dling uncertainties and ambiguities in data classifica-
tion, making GMMs well-suited for applications where
precision is critical, such as predicting virus transmis-
sion pathways.

4. Enhanced interpretability: By representing data as a
combination of Gaussian distributions, GMMs offer a
more interpretable framework for understanding the un-
derlying patterns and structures within the data.”’ This
interpretability is essential for validating and explaining
the results of UL algorithms, particularly in scientific
applications where transparency and explainability are
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FIG. 4. Clustering of particles at time 4 s from the start of the cough-
ing event in the lateral direction. The x—axis is the particle diameter
in um, and the y—axis is the distance from the mouth in m. The
red vertical line at 5 pum indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

paramount.

5. Integration with other methods: GMMs can be eas-
ily integrated with other ML techniques and domain-
specific models.”*° This will allow for a more com-
prehensive data analysis by exploiting the strengths of
all approaches involved, leading to more accurate and
reliable predictions.

6. Handling multimodal data: Real-world data often ex-
hibit multimodal distributions, with multiple subgroups
or modes present within a single dataset. GMMs are
particularly adept at handling such multimodal data, as
they can identify and model each mode separately.®’
This ability is crucial for accurately capturing the com-
plexity of virus transmission processes and other intri-
cate phenomena.

All these benefits make GMMs a powerful tool for improv-
ing the predictions and insights derived from UL, particu-
larly in complex and high-stakes applications such as virus
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FIG. 5. Clustering of particles at time 8 s from the start of the cough-
ing event in the lateral direction. The x—axis is the particle diameter
in pum, and the y—axis is the distance from the mouth in m. The
red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

transmission studies. This section details how GMM is uti-
lized to refine clusters based on the centers identified by a
different clustering algorithm. It is well known, for exam-
ple, that the K-means algorithm separates into clusters, mostly
of spherical shape and almost equal size, which can be a
limitation./ GMM addresses this by modeling the data as
a combination of Gaussian distributions, each with its mean
and covariance. In the present work, we show how to utilize
GMM to improve clustering results initially generated by the
RUN-ICON algorithm.'* By using the dominant cluster cen-
ters from RUN-ICON as starting points for GMM, we achieve
more precise and reliable clustering. All relevant equations
are presented, and an implementation guide is provided. It
has to be noted that the number of dominant clusters does not
change every time, and it remains as predicted through RUN-
ICON.
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FIG. 6. Clustering of particles at time 0.12 s from the start of the
coughing event in the streamwise direction. The x—axis is the par-
ticle diameter in um, and the y—axis is the distance from the mouth
in m. The red vertical line at 5 um indicates the threshold between
droplets and aerosols. (a) RUN-ICON predicts clustering, and (b)
clusters are redistributed as predicted by GMM. Each colour indi-
cates droplets belonging to the same cluster.

A. Setting up the framework

The GMM assumes that data points come from a mixture of
multiple Gaussian distributions.!” Suppose we have a dataset
of N data points x that has already been separated into K dif-
ferent clusters. For each cluster, a mean ty; (a 1 x n matrix) is
defined, each element of which is:

Ne ok
Ll X

N 1

Hij =
where:
e kell,.. K]
* Wgj is the j-th element of matrix py (j € [1,...,n]
* Ny is the number of points in cluster k.

. xi-‘j is the j-th coordinate of a point that belongs to clus-
ter k
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FIG. 7. Clustering of particles at time 2 s from the start of the cough-
ing event in the streamwise direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

We also define for every cluster k an n x n covariance matrix
Y as:

1
o= —(X¥)Txk 2
k Nkfl( W) Xy 2
where:

. Xﬁ is the Ny x n matrix of all cluster-k points minus the
corresponding to each row [ component.

Then, we may define the Gaussian distribution for points x

belonging to cluster k as:

(i, 52) = exp (3 -0 x ) )

3

1
(277:)n/2|):k|1/2
where

* |E| and E,:l are the determinant and inverse of the co-
variance matrix, respectively.
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FIG. 8. Clustering of particles at time 4 s from the start of the cough-
ing event in the streamwise direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

e (x— W) is an n x 1 vector, corresponding to the differ-
ence between point X and its respective component of

i

We may also define a weight 7 for each cluster, which indi-
cates the proportion of points belonging to that cluster, i.e.:

T = Nk/N (€]

As becomes obvious Zf:l 7, = 1. Then, based on GMM, the
probability of a point x; from the dataset belonging to cluster
k is given by:

ﬂJVX,‘ ,E
- Kk (il e, i) )
Yo i (xil gy, )

For a complete derivation of this formula, the interested
reader is referred to the work by Reynolds.®”
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FIG. 9. Clustering of particles at time 8 s from the start of the cough-
ing event in the streamwise direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

B. Expectation-Maximization (EM) Algorithm

We may now introduce the EM algorithm, which is em-
ployed to find the maximum likelihood estimates of the Gaus-
sian distributions for the clusters based on GMM. It iteratively
performs two steps: the Expectation (E) step and the Maxi-
mization (M) step.

 E-step During this step, we calculate the probability Y
that data point x; belongs to cluster k. For every point,
K probabilities for belonging to any of the K clusters
are calculated. A point is placed in a cluster based on
the highest probability score. This cluster could now be
different from the original cluster the point belonged to.

M-step In this step, we redistribute points to clusters.
‘We update the means, covariance matrices and weights
for the new clusters of points, according to equations
(1), (2) and (4), respectively. The number of clusters K
remains the same, but the centers can change. The new
centres are defined by the new calculated means.
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FIG. 10. Clustering of particles at time 0.12 s from the start of the
coughing event in the vertical direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

C. Implementation Steps

In this section, we detail the implementation of our method-
ology for the integration of RUN-ICON with GMM in three
distinct steps:

1. Initialization with RUN-ICON

The RUN-ICON algorithm is utilized to find the domi-
nant clustering, and the cluster centres, as determined
by the algorithm, are set as the initial means of the
GMM. The initial covariance matrices and weights are
also calculated through equations (2) and (4), respec-
tively.

2. EM algorithm

Execute the EM algorithm to refine the GMM parame-
ters:

« E-step: Calculate the probabilities ¥ for all points
to belong to any of the k clusters.
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FIG. 11. Clustering of particles at time 2 s from the start of the
coughing event in the vertical direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

* M-step: Redistribute points in K clusters based on
highest probability scores and recalculate iy, Xy,
and my.

3. Check for convergence

To check for convergence, the previously and newly cal-
culated means are compared. If they are below the tol-
erance set by the user, the algorithm terminates. Other-
wise, we return to Step 2 and repeat.

Integrating RUN-ICON with GMM, we thus obtain a robust
clustering method that leverages RUN-ICON’s ability to form
dominant clustering identification and GMM’s flexibility for
modeling complex data distributions. The EM algorithm it-
eratively refines the parameters, leading to more precise and
dependable clustering outcomes. This dual approach helps
understand droplets’ nuanced behaviour over time and space.

Vertical Distance, m
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Vertical Distance, m

20 0 60 80 100
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FIG. 12. Clustering of particles at time 4 s from the start of the
coughing event in the vertical direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

V. RESULTS AND ANALYSIS

In the work by Christakis et al.'®, where the RUN-ICON
algorithm was applied to the study of droplet spreading in
an enclosed space, no consideration was given to what was
occurring in each of the three spatial dimensions (i.e., lat-
eral, streamwise, and vertical) separately. Instead, the Eu-
clidean norms of the three-dimensional position vectors from
the mouth of a coughing person were considered. We utilize
the RUN-ICON algorithm in the present work to predict the
optimum cluster numbers. Then, we apply GMM to study
what occurs in all three spatial dimensions separately and to
examine whether the GMM model predicts different particle
classifications in the clusters. A typical ventilation rate of 120
m?/h was considered, with the person standing at the cabin’s
center underneath the air inlet, as shown in Figure 1. The
streamwise direction is along the y—axis, the lateral direc-
tion is along the x—axis, and the vertical direction is along
the z—axis.

Data from the CFD simulations mentioned in Section II for
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FIG. 13. Clustering of particles at time 8 s from the start of the
coughing event in the vertical direction. The x—axis is the particle
diameter in pm, and the y—axis is the distance from the mouth in m.
The red vertical line at 5 um indicates the threshold between droplets
and aerosols. (a) RUN-ICON predicts clustering, and (b) clusters are
redistributed as predicted by GMM. Each colour indicates droplets
belonging to the same cluster.

Time (s) | Number of Maximum Minimum
particles diameter (um) diameter ({tm)
0.12 146,400 108 19
2 146,334 102 1
4 144,676 95 0.3
8 116,875 82 0.6

TABLE 1. Times after the start of the coughing event, number of
remaining particles and maximum-minimum diameters in the distri-
bution.

this particular ventilation rate were utilized. Several particles
were expelled and tracked in all three spatial dimensions four
times (0.12's, 2's, 4 s, and 8 s). At the final time of 8 s, ap-
proximately 117,000 particles remained (since the effects of
evaporation were considered), with diameters between 82 and
0.6 um (see Table I). As can be seen, the evaporation rate ac-
celerates with time; a considerable amount of particles evapo-
rated in the last 4 s of the flow (27,801 particles), whereas in
the first 4 s, only 1,724 particles evaporated. The diameters
of particles, as expected, were reduced due to the effects of

Time (s) |Optimum number of clusters
x—dir  y—dir z—dir
0.12 5 3 5
2 3 3 3
4 4 3 3
8 3 3 3

TABLE II. Times after the start of the coughing event and optimum
number of clusters in each of the three directions.

evaporation. The individual was considered to cough along
the y—axis (streamwise), and the optimum numbers of clus-
ters, as RUN-ICON predicted for each of the three directions,
are given in Table II.

In the medical community, particles may be classified as
droplets or aerosols based on their sizes (particles with diam-
eters greater than 5 um are classified as droplets. Otherwise,
they are classified as aerosols).*~*> This classification is cru-
cial, as droplets are considered more significant for viral load
transmission due to their larger sizes and, hence, the higher
viral load that they carry. In the present study, since evapo-
ration has been considered, we observed this distinction and
analyzed how many particles fall off the droplet size category
at all recorded times.

A. Lateral (x—) Direction

e Initial Time (0.12 s): RUN-ICON (Figure 2(a)) iden-
tified five clusters, symmetrically distributed on either
side of the coughing individual. The clustering was pre-
dominantly size-based, with larger particles showing a
higher initial momentum, resulting in similar travel dis-
tances.

The application of GMM (Figure 2(b)) revealed a dif-
ferent clustering pattern, indicating that particles of the
same size could travel varying distances. This suggests
variability in particle velocities, possibly due to inter-
actions among particles. The clusters formed by GMM
included three thin clusters around the origin and two
additional clusters, illustrating the velocity differences
among similarly sized particles.

2 s: RUN-ICON (Figure 3(a)) predicted three clusters,
with smaller particles forming a distinct cluster likely
due to the evaporation of smaller droplets. Larger par-
ticles were separated based on their position relative to
the coughing source, indicating similar travel distances
due to higher momentum. GMM (Figure 3(b)) showed
minimal changes, maintaining the clusters identified by
RUN ICON.

.

4 s: RUN-ICON (Figure 4(a)) identified four clusters,
with smaller particles gaining momentum and travel-
ing slightly further than larger particles. GMM (Figure
4(b)) retained the same clustering pattern, confirming
the initial analysis.
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e 8 s: RUN-ICON (Figure 5(a)) predicted three clusters,
with larger particles now traveling further than smaller
ones. GMM (Figure 5(b)) confirmed these findings,
showing similar particle distributions in the three clus-
ters.

In the lateral direction, particle travel distances did not
exceed 0.2 meters, making this direction less significant
than the other two dimensions.

B. Streamwise (y—) Direction

« Initial Time (0.12 s): RUN-ICON (Figure 6(a)) identi-
fied three clusters where both small and large particles
traveled similar distances, with intermediate particles
lagging. GMM (Figure 6(b)) maintained this cluster-
ing, indicating no significant alteration.

2 s: RUN-ICON (Figure 7(a)) predicted three clus-
ters, with smaller particles gaining momentum while
larger particles lagged slightly, likely due to interactions
among larger particles. GMM (Figure 7(b)) showed
similar cluster formations, supporting the initial results.

4 s: RUN-ICON (Figure 8(a)) identified three clusters
with larger particles overtaking smaller ones. GMM
(Figure 8(b)) confirmed these clusters with no signifi-
cant changes.

8 s: RUN-ICON (Figure 9(a)) predicted three clusters,
with smaller particles now overtaking larger ones, as
larger particles settled closer to the floor and were less
influenced by the airflow. GMM (Figure 9(b)) main-
tained the same clustering, showing consistent patterns.

As observed, particles in the streamwise direction did
not travel beyond 1.2 meters from the mouth, with the
predicted distribution by GMM remaining consistent.

C. Vertical (z—) Direction

* Initial Time (0.12 s): RUN-ICON (Figure 10(a)) iden-
tified five clusters, with particles distributed above and
below the line defining the streamline direction. This
behavior mirrored the lateral direction due to initial par-
ticle dynamics. GMM (Figure 10(b)) exhibited similar
clustering to the initial time in the lateral direction (Fig-
ure 2(b)), suggesting variability in particle velocities,
possibly due to interactions among particles due to their
close packing.

2 s: RUN-ICON (Figure 11(a)) predicted three clusters,
with gravity significantly influencing larger particles,
driving them towards the ground. GMM (Figure | 1(b))
maintained this trend, showing similar clusters.

4 s: RUN-ICON (Figure 12(a)) identified three clusters,
with an increased slope between large and small par-
ticles, indicating faster downward movement of larger
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particles. GMM (Figure 12(b)) confirmed this pattern,
showing consistent clustering.

¢ 8 s: RUN-ICON (Figure 13(a)) predicted three clus-
ters, with 97% of the particles having fallen at least 1 m
below mouth level and larger particles having already
settled on the floor. GMM (Figure 13(b)) slightly al-
tered this clustering by gathering together in a cluster
all particles that had already settled on the floor (ap-
proximately 27% of the distribution).

In the vertical direction, the separation seems to be primarily
size-driven, with larger particles gaining momentum due to
gravity and thus traveling faster than smaller ones.

D. Droplet-aerosol separation

The presented data shows that a significant amount of par-
ticles evaporates entirely within the time scale of 8 s (approx-
imately 21%). However, this only occurs during the latter
stages of the flow; within the first 4 s, less than 2% of par-
ticles from the initial distribution have evaporated.

As for the droplet-aerosol separation, it may be observed
that at 2 s, much less than 1% of particles are below the 5
pm threshold (56 out of approximately 146,000). The num-
ber of particles below 5 um remains relatively small even af-
ter 4 s (62 particles out of roughly 144,000). Only after 8 s
does this number rise to approximately 0.6% of the particle
size distribution, which is a tiny percentage of the distribu-
tion. Hence, we may conclude that by the end of the flow, the
rate of smaller particles-aerosols in the particle size distribu-
tion is insignificant and has no critical effect on lowering virus
transmission.

E. Comparisons with other works

In recent years, there have been limited studies where par-
ticle dispersion with airflow in indoor spaces has been mod-
eled by utilizing CFD.”*%%" To the best of our knowledge,
there are no studies in the literature that combine CFD with
UL techniques, to extract patterns of particle dispersion in en-
closed spaces, such as hospital rooms, ship cabins, etc. Hence,
direct comparisons between the findings of the current study
and past works are not feasible for several reasons:

« Traditional CFD studies focus on modeling airflow and
particle trajectories under specific conditions, but they
may not delve deeply into identifying underlying pat-
terns in particle behavior. By incorporating clustering
with the aid of UL and GMMs, the proposed method
goes beyond merely tracking particle movement; it dis-
cerns intricate patterns in dispersion, clustering parti-
cles based on their properties and interactions. This
level of analysis provides insights that standard CFD
might not capture, particularly in understanding how
different particles behave as a collective over time.
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e The use of GMMs allows us to uncover hidden struc-
tures within the particle dispersion data. This approach
can reveal complex, non-linear relationships in the data
that CFD models, which rely on deterministic equa-
tions, might overlook. The resulting clusters can indi-
cate different dispersion regimes or patterns that are not
readily apparent in a conventional CFD analysis.

Our approach integrates data from multiple spatial and
temporal dimensions, providing a more holistic view of
particle dispersion. Traditional CFD studies might an-
alyze these dimensions separately or focus on a partic-
ular aspect, such as airflow patterns, without fully inte-
grating them to discern broader patterns. By contrast,
our method can simultaneously analyze these dimen-
sions to identify clusters that reflect real-world particle
behavior more accurately.

By identifying clusters representing different dispersion
behaviour, our method could improve the accuracy of
predictions about where particles will travel under var-
ious conditions. Traditional CFD models might predict
average behavior well. Still, our method’s ability to
identify specific clusters allows for more precise pre-
dictions, particularly in complex environments like a
hospital room or a cruise ship cabin, where airflow and
particle interactions can be highly variable.

Our method significantly advances traditional CFD ap-
proaches by integrating unsupervised and stochastic cluster-
ing techniques. This combination allows us to identify and
analyze complex patterns in particle dispersion that traditional
CFD studies might miss. Because of our approach’s enhanced
analytical depth, multidimensional integration and adaptive
nature, direct comparisons with conventional CFD studies are
not straightforward. Instead, our method should be seen as a
more sophisticated tool that provides more profound and more
precise insights into the dynamics of particle dispersion, espe-
cially in complex environments.

VI. CONCLUSIONS

In this study, CFD data were analyzed with the aid of Un-
supervised Machine Learning to study airflow dynamics in a
cruise ship cabin where a coughing individual was present.
The trajectories of emitted droplets of different sizes were
recorded in all three spatial dimensions. A typical ventila-
tion rate was employed. Initially, the RUN-ICON algorithm
was used to determine the optimum clustering configuration.
Then, GMM was utilized to introduce stochasticity and ac-
count for the probabilistic nature of virus transmission dynam-
ics.

The primary directions of particle dispersion are the stream-
wise (y—) and vertical (z—) directions, influenced by the air-
flow and gravity, respectively. The maximum lateral (x—) dis-
tance is approximately 12-13% of the distances covered in the
other two directions. As particles disperse, evaporation re-
duces their number by approximately 21%, and by the end of
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the flow, only about 0.6% of particles fall below the 5 um
threshold.

In most cases, RUN-ICON results were not altered signif-
icantly by applying GMM, especially when the flow was pri-
marily in one direction (i.e., streamwise and lateral). Signifi-
cant differences were observed only at the initial stages when
particles moved with similar velocities in multiple directions.
The clustering seems to be size-based and reflects the dynam-
ics of the flow. The similarity in clusters produced by both
RUN-ICON and GMM indicated predictable patterns in par-
ticle dispersion, with smaller particles traveling further due to
their ability to stay suspended in the air longer. This is partic-
ularly relevant for understanding the spread of airborne par-
ticles, such as respiratory emissions, where smaller particles
could remain airborne and travel longer distances, potentially
increasing the risk of transmission in enclosed spaces.

« Lateral direction: As mentioned, this is the less signifi-
cant direction, with particles dispersing on either side of
the mouth but without travelling substantial distances.

Streamwise direction: Initially, smaller particles moved
faster, with larger particles catching up later. How-
ever, since the larger particles reached the floor faster,
they lost momentum, which enabled smaller particles to
move further away in the streamwise direction. How-
ever, no particles reached a distance greater than 1.2 m
from the mouth in that direction.

.

Vertical direction: In this direction, the separation
seemed to be size-based directly from the start due to
gravity. By the final time of 8 s, almost all particles
(97%)) were at a vertical distance below 1 m from the
mouth.

The combination of RUN-ICON with GMMs in this study
offers a robust framework for analyzing complex particle dy-
namics. RUN-ICON effectively identifies critical clusters
within the data, providing a solid base that GMMs can use
to model the underlying distributions more precisely. This
integration enables a more detailed and probabilistic charac-
terization of particle dispersion, capturing subtle variations
and sub-populations within the trajectories. Consequently,
this approach enhances the results’ accuracy and interpretabil-
ity, making it particularly useful for applications like mod-
eling virus transmission in enclosed environments. As uti-
lized in this work, the dual-method approach highlights the
importance of considering initial conditions and dynamic in-
teractions among particles to understand their dispersion ac-
curately. Moreover, the present study provides insights into
the behavior of respiratory droplets and aerosols, which are
crucial for developing effective mitigation strategies in con-
trolling airborne disease transmission.

The proposed combination of RUN-ICON for identifying
potential cluster centre and their refinement with GMM can
be an effective approach in various research areas, including
beyond classical fluid dynamics, such as:

« Air quality analysis: Clustering data from various sen-
sors to identify patterns and sources of air pollution.
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» Wildlife monitoring: Analyzing sensor data to track an-
imal movements and identify species in diverse habi-
tats.

Anomaly detection in transactions: Detecting unusual
patterns in financial transactions that might indicate
fraud or other anomalies.

Market segmentation: Identifying different segments of
customers based on their purchasing behavior or finan-
cial activities.

Network intrusion detection: Modeling regular network
traffic and identifying deviations that may indicate se-
curity breaches.

Malware classification: Clustering software behaviors
to identify new or evolving malware strains.

In these scenarios, the approach of utilizing RUN-ICON to
find initial cluster centers before applying GMM can help to:

* Improve the accuracy of the GMM by providing it with
a better initial estimate of cluster centers.

* Reduce the complexity of GMM fitting by starting with
a more manageable number of well-defined clusters.

* Enhance interpretability by providing a clearer structure
and distribution of the data.

This combination can leverage the strengths of both ap-
proaches, leading to more robust and insightful models in
these diverse research areas.
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