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A deep learning super-resolution scheme is proposed to reconstruct a coarse, turbulent temperature field into a detailed,

continuous field. The fluid mechanics application here refers to an airflow ventilation process in an indoor setting. Large

eddy simulations are performed from a dense simulation grid and provide temperature data in two-dimensional images.

The images are fed to a deep learning flow reconstruction model after being scaled down to 100 times. Training and

testing are performed on these images, and the model learns to map such highly coarse fields to their high-resolution

counterparts. This computational, super-resolution approach mimics the process of employing sparse sensor measure-

ments and trying to upscale to a dense field. Notably, the model achieves high performance when the input images

are scaled down by 5− 20 times their original dimension, acceptable performance when 30, and poor performance at

higher scales. The peak signal-to-noise ratio, the structure similarity index, and the relative error between the origi-

nal and the reconstructed output are given and compared to common image processing techniques, such as linear and

bicubic interpolation. The proposed super-resolution pipeline suggests a high-performance platform that calculates

spatial temperature values from sparse measurements and can bypass the installation of a wide sensor array, making it

a cost-effective solution for relevant applications.

I. INTRODUCTION

The choice of an efficient sensing mechanism is essential

for many science and engineering principles, such as heat

transfer, fluid flow control, astrophysical data, environmen-

tal processes, biological and medical applications1–5, to men-

tion a few. Of equal importance is the post-processing of the

discrete measurements and their upscaling to a nearly contin-

uous field, i.e., from a coarse to a fine grid, with the aid of a

minimum number of input data.6 In this direction, sparse sen-

sor measurement reconstruction has emerged and found fertile

ground in fluid mechanics, especially concerning highly tur-

bulent flow fields.

The super-resolution (SR) method has been widely ap-

plied in sparse sensor measurement reconstruction. This data-

driven approach maps measurements from an array of sensors

to a computational grid of discrete values. This applies to

2D or 3D image data processing, where pixels correspond to

sensor positions. A sparse array of sensors maps to a low-

resolution image. The key point here is to upscale the low-

resolution image to a fine-resolution one, providing a contin-

uous field and practically substituting the need to impose a

dense sensor array. Peng et al. 7 has managed to obtain full

temperature field reconstruction with a (200 × 200) resolu-

tion from 16 temperature observations. Carter et al. 8 indi-

cated several unresolved issues related to the reconstruction

parameters, the number of detailed fields needed to train the

models, and the number of sensors in the investigated region.

Furthermore, sensor position optimization is another critical

and longstanding open issue requiring further investigation as

it could have a significant impact.9 Other issues that impose
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difficulties include noisy environmental phenomena and pro-

cessing power demands.10

In addition to SR, reduced-order models (ROMs) have been

well-suited to complex fluid mechanics problems to reduce

the huge computational cost imposed.11 Proper orthogonal

decomposition (POD) methods12 have been exploited for di-

mension reduction, which may be considered as a case of

unsupervised machine learning (ML) method in the form of

a single-layer neural network (NN).8,13,14 Hybrid schemes

have also emerged to ensure computational accuracy and effi-

ciency, combining POD with coupling reconstruction meth-

ods based on the particle swarm optimization technique.15

Nevertheless, the most common methods in fluid mechan-

ics are based on shallow ML methods16–18 and deep learn-

ing (DL) architectures, mainly with convolutional neural net-

works (CNNs).19–22

Convolutional layers are well-posed to imaging operations

due to their ability to capture and reveal features from big

data with advanced computational approaches that demand

only a fraction of the time and resources needed by standard

fully connected neural networks (FCNNs).23 Along with sub-

grid simulation data upscaling24 or data assimilation meth-

ods that combine actual measurements with simulations25, the

emphasis is on obtaining fine mesh quantities by minimizing

the error between the received data and given model predic-

tions. The choice of an appropriate method depends on pa-

rameters such as the amount of available data and the de-

sired accuracy. This is driven by cost issues and technical

considerations of the sensors. In an SR architecture, CNN

layers (i.e., convolutional, deconvolutional, pooling and ac-

tivation layers) connect appropriately. More accurate archi-

tectures are built by further incorporating recurrent neural

networks (RNNs)26, generative adversarial neural networks

(GANs)27,28, and auto-encoders/decoders.29 After the intro-

duction of physics-informed neural networks (PINNs)30, the

concept of physics-driven approaches has also emerged.31–33
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Furthermore, accurate results in heat and flow field recon-

struction from sparse observations were achieved by embed-

ding Fourier neural operators in the neural network.34

This paper invokes high-resolution temperature fields from

implicit Large Eddy Simulations (ILES) and scales down to

ultra-low resolution fields, down to 100 times compared to

the original dimensions. It is a fact that in computer vision

applications, to our knowledge, standard coarsening scales

for training an SR framework range from 2 to 4 times.35–37

The aim is to theoretically map an ultra-low resolution im-

age to an array of sensors that measures temperature values

inside a closed rectangle region. The Deep Learning Flow

Image (DELFI) architecture, which has been previously ap-

plied for reconstructing the velocity field in an incompress-

ible sudden expansion application and the pressure field in a

shock-wave turbulent boundary layer interaction38,39, is also

employed here. DELFI has been compared to popular archi-

tectures used in fluid mechanics SR applications and found

to perform equally well. However, being lightweight and

fast (the reader can refer to the comparison made in Sofos,

Drikakis, and Kokkinakis 39 ).

The temperature field is considered for investigating the

model’s performance, as it is an essential parameter for in-

door ventilation and highly important for thermal and energy

management.40–43 Therefore, temperature maps (2D images)

are taken from high-resolution computational fluid dynamics

(CFD) simulations of typical room air ventilation. The high-

resolution fields are used to compare and train DELFI, along

with ultra-low-resolution counterparts. As mentioned before,

these counterparts can be seen as sparse sensor values, and the

inherent difficulty lies in reconstructing these discrete points

into a meaningful, continuous field. We show that the pro-

posed SR method is superior to typical image processing tech-

niques like linear or bicubic interpolation and offers high per-

formance in ultra-scaled scenarios. After being appropriately

trained, it can be fast, compared to other SR models,38 and

easy to run for training or validation on standard hardware,

adding to its appeal and potential in the field.

The paper is organized as follows. Section II presents the

simulation details and data acquisition and describes the im-

plied SR architecture. The proposed model reconstruction

ability is compared to common image processing methods and

presented in terms of qualitative and quantitative results in

Section III. Finally, Section IV summarizes the main conclu-

sions and provides suggestions for future work.

II. MODELS AND METHODS

A. Equations

The three-dimensional Navier-Stokes (NS) equations for a

Newtonian viscous fluid are considered. For a finite control

volume, Ω, and ignoring body forces, the NS can be written

in conservative variables and Cartesian co-ordinates form as

follows:

∂

∂ t

ˆ

V

UdV +

˛

S

(Fa +Fs +Fq )dS = 0 , (1)

where U represents the vector of the conservative variables,

Fa is the vector of the advective fluxes, Fs is the vector of the

total (pressure and viscous) stress fluxes, and Fq is the vector

of the heat conduction fluxes:

U =
[

ρ ,ρu ,ρv ,ρw ,et

]T

Fa =
[

ρ ,ρu ,ρv ,ρw ,et

]T
u⊥

Fs =
[

0 ,S1 ,S2 ,S3 ,S ·u
]T

Fq =
[

0 ,0 ,0 ,0 ,q · n̂
]T

(2)

where S = [S1,S2,S3]
T = n̂ · (pI −T ) represents the pressure

and viscous (shear and normal) stresses in each correspond-

ing Cartesian direction, et = ei +ρ(u ·u)/2 is the total energy

density, ρ is the density; u is the velocity vector; p is the static

pressure; u⊥ = (u · n̂) is the velocity magnitude normal to the

surface element dS; n̂ is the outward pointing unit normal of

a surface element dS belonging to the closed boundary ∂Ω of

the control volume Ω; ei is the internal energy density, which

for a calorically perfect gas is given by:

ei = ρcvT =
p

γ −1
(3)

where T is the temperature, cv is the specific heat capacity at

constant volume, and γ is the heat capacity ratio (or adiabatic

index) defined as γ = cp/cv, where cp is the specific heat ca-

pacity at constant pressure and Rs = cp−cv = cv (γ −1) is the

specific gas constant.

The viscous stress tensor is given by:

T = λb (∇ ·u) I +µ
[

∇⊗u+(∇⊗u)T
]

(4)

where I is the identity tensor. The bulk viscosity is given by

λb = −4µ/3 according to Stokes’ hypothesis, and µ is the

dynamic viscosity obtained according to Sutherland’s law:

µ(T ) = µref

(

T

Tref

)1/2
Tref +Ts

T +Ts

(5)

where the free-stream values are used as the reference and the

Sutherland temperature is Ts = 110.4 K.

The heat flux is calculated according to Fourier’s Law of

heat conduction:

q =−κ ∇T (6)

where κ is the heat conductivity given by:

κ(T ) =
cp

Pr
µ(T ) (7)

and Pr = 0.72 is the Prandtl number.

B. Numerical solver

The simulations were performed using the block-structured

grid code CNS3D, which solves the above Navier-Stokes
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equations using the finite-volume method (FVM).44,45

CNS3D can be used for implicit Large Eddy Simulations

(ILES) and Direct Numerical Simulations (DNS). CNS3D

has been extensively validated for low- and high-speed flows,

including turbulent mixing.44–48 The advective terms are

solved using the Godunov-type (upwind) method. The Rie-

mann solver is solved at the cell interfaces. The prim-

itive variables are reconstructed at the cell interfaces and

used to calculate the numerical fluxes. For the spatial re-

construction, a one-dimensional swept unidirectional stencil

is used. The numerical simulations herein were obtained

using an augmented44 11th-order weighted essentially non-

oscillatory (WENO) scheme49–51 for interpolation in con-

junction with the “Harten, Lax, van Leer, and (the miss-

ing) Contact” (HLLC) approximate Riemann solver by Toro,

Spruce, and Speares 52 . Further details of the implemented

WENO scheme and HLLC Riemann solver are provided in

Appendix A and B, respectively. The solution is advanced in

time using an explicit five-stage (fourth-order accurate) op-

timal strong-stability-preserving Runge-Kutta method.of Spi-

teri and Ruuth 53

C. Flow setup

The room is modelled as rectangular with dimensions of

6.0 × 2.4 × 2.8 m3 (length × height × width). A standard

air conditioning (AC) unit is placed at the cabin’s center with

a square outlet (48 cm2) and four rectangular inlets (48× 4

cm2 each) that expel air at an angle of 45° degrees, as per the

schematic in Fig. 1.

The initial room temperature is 25 °C with a 60% relative

humidity. The simulation is carried out using two components

(multi-component flow), where the first component is consid-

ered to be dry-air (0% moisture) with an adiabatic index of

γda = 7/5 and molar mass of Mda = 28.964 kg/kmol, and the

second component is water vapor with an adiabatic index of

γwv = 4/3 and molar mass of Mwv = 18.015 kg/kmol. The

velocity is initially assumed to be equal to zero everywhere in

the room, and the total energy varies in the normal (y) direc-

tion due to gravity, i.e.,

et = ei +ρmgyy , (8)

where the Earth’s gravitational acceleration is taken as con-

stant gy = −9.81 m/s2. The internal energy, ei is calculated

according to:

ei =
pda + pwv

γ −1
(9)

where pda is the room pressure of the dry air component and

pwv is the water vapor pressure. The former is obtained ac-

cording to pda = p0 − pwv, where p0 is taken here as the stag-

nation pressure at ground/sea level, i.e., p0 = 101,325 Pa. The

water vapor pressure is calculated according to pwv = xwv p0,

where the molar-fraction is xwv = wwv (M /Mwv), and the to-

tal molar mass of a miscible mixture is obtained according to:

M =
1

∑i (wi/Mi)
(10)

48 cm

4
8
 c

m

48 cm

4 cm

4 cm4 cm

z

x

2
8

0
 c

m

y

x2
4

0
 c

m
600 cm

θ θ=45

FIG. 1. Shape and size of the room and AC unit considered.

where wi is the mass-fraction of the i-th component. The ini-

tial air mixture density is taken to be constant and is calculated

based on the prescribed relative humidity, i.e., the fraction of

water vapour and dry air:

ρm = ρda +ρwv (11)

where the individual component density is calculated from

ρi = pi/
(

Ri
sT0

)

. Here, Ri
s is the specific gas constant of the

i-th component, while T0 is the initial (stagnation) room tem-

perature.

The light-blue shaded regions in Fig. 1 are the AC unit in-

lets, pushing cold air (∼18 °C) into the room at 4 m/s with

relative humidity (RH) of 40% and at an angle of θ = 45° de-

grees outwards. Finally, it is mentioned that ventilation rates

in a room may vary depending on the application.54–56

The total mass-flux of the AC inlets is (counter-)balanced

by the light-red color-shaded square AC outlet located pre-

cisely in the middle of the room ceiling, surrounded by the

AC inlets. A stagnation pressure outflow condition is used of

≃ 101,324 Pa. As mentioned, the near-wall boundary layer

is not resolved in the present simulations to help reduce the

overall computational expense. Therefore, the room walls are

modelled as slip instead of no-slip; these include all remaining
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FIG. 2. Three-dimensional contours of the flow temperature field in a rectangular room approximately ∼72 seconds after the air-conditioning

(AC) unit is turned on. Initial room temperature at 25 °C, AC inflow temperature at 18 °C. Pockets of warm air can still be seen as illustrated

by the dark-red colored regions (color bar max temperature value chosen to better visualize the hot air regions ∈ [24, 25] °C).

TABLE I. Mesh convergence of the mean room temperature at t = 90

seconds.

Mesh 1 Mesh 2 Mesh 3

T̃mean (°C) 22.6 22.9 23.7

Difference (%) 0 1.3 5

boundary surfaces, i.e., the room floor, side walls, and ceiling.

The computational results are obtained on a block-

structured hexahedral orthogonal Cartesian mesh comprising

of cells with an edge length of 2 cm (∆x+ ≃ 700), resulting

in a mesh resolution of 300 × 120 × 140, giving a total of

5,040,000 cells. In essence, the mesh comprises cells of the

same size in all directions, i.e., ∆x = ∆y = ∆z = 2 cm.

Figure 2 illustrates the temperature iso-surfaces of resolved

three-dimensional turbulent flowfield approximately ∼72 sec-

onds after the AC unit began cooling the room. The geometry

of the AC units and inlet conditions is such that the resulting

room flow circulation forms four hot-spot regions symmet-

ric about the room’s floor plan (xz-plane) midsections. Re-

garding height (y-axis), these hot spots are located above 1.2

meters, mainly around the room’s ceiling, and indicate the re-

gions where the AC units affect the least.

Table I compares the mean room temperature between the

high-resolution mesh (mesh 1) and two coarser meshes (mesh

2 and 3). The coarser meshes comprise hexahedral cells with

double the edge length (i.e., 4 and 8 cm) compared to mesh

1. After 90 seconds, the results exhibit less than < 1.3% dif-

ferences. The smaller turbulent scales resolved on finer mesh

resulted in a slightly greater mixing between the dry, cool air-

conditioning air and the warm, humid, still air in the room.

Consequently, the obtained mean temperature and relative hu-

midity are slightly lower on the finer mesh. Though an even

finer mesh would resolve smaller turbulence flow scales, it

would require a significantly greater computational cost while

providing diminishing returns for this study. For example, dis-

cretizing the present room size using hexahedral cells with an

edge length of 1 cm would increase the computational cost by

×16 while providing an even smaller incremental difference,

< 1.3%, to the mean room temperature obtained.

Based on the AC inlet height (4 cm) and inlet velocity

(4 m/s), an inlet Reynolds number of Re j ≃ 11,000 is ob-

tained. Compared to wall-bounded turbulent flows, free-shear

turbulent flows are typically much easier to resolve since the

largest turbulent scales are of the order of the thickness of

the shear layer. Nonetheless, for turbulent jet flows, the ax-

ial mesh resolution near the inlet is of the order of O(−3) of

the inlet’s diameter (round jet) or height (planar jet). However,

applying such a fine resolution would make the computational
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requirements prohibitively large, even if restricted to the flow

regions surrounding the AC inlets. However, the air velocity

varies at around 0.1−0.4 m/s along the walls in the rest of the

domain. The purpose of the present study is not to elucidate

the turbulence properties of the suddenly expanded turbulent

flow emitted from the AC jet inlets. The mesh convergence

study demonstrates that the largest and most energetic turbu-

lent scales driving most of the mixing between the initially hot

air in the room and the cold air injected by the AC inlets have

been reasonably resolved.

D. Data acquisition

From a technical point of view, the model processes a

dataset that contains a time sequence of ∼10,000 images (pre-

cisely 9,986 time instants) in the xz-plane and another pool of

10,000 images in the yz-plane (see Fig. 3). The data is gath-

ered over 90 sec (one and a half minutes), resulting in a sam-

pling frequency of ∼0.009 Hz. Images correspond to temper-

ature contours ranging between 18 to 25 °C. The images are

in 3-channel mode (red - R, green - G, and blue - B). Colored

images can generally represent the range of intensities better

than grayscale images for the human eye.57 Actual tempera-

ture values can be taken after the 3 channel pixel values are

averaged in one layer. The extracted images are randomly di-

vided into training (80%) and validation (20%) datasets.

E. Super-resolution architecture

The employed super-resolution architecture is shown in

Fig. 3. It is based on the DELFI model, which has been ex-

tensively tested on shock-boundary layer interaction (pressure

fields)38 and suddenly-expanded flows (velocity fields)39, and

found to achieve excellent performance, with minimum re-

source and computational time. Similar architectures based

on the prototype U-Net58 architecture have also been incorpo-

rated to reconstruct temperature fields.59

In this study, DELFI reaches its limit of reconstruction of

ultra-low scale fields, up to 100 times lower than the input im-

ages. The cases tested are presented in Table II. It is pointed

out that the specific application is not directed at obtaining a

highly accurate temperature field. The focus is on assigning

image pixel values to construct a computational framework

resembling a sparse sensor network. In such a way, the com-

putational platform can draw a finer temperature field from

sparse measurements.

Training data enters the scale-down stage (Fig. 3) to resem-

ble a sparse sensor network. As the amount of input data

is significant and memory demands are increased to process

all images simultaneously, the images are fed sequentially

into the pipeline in batches of 1000 images per training in-

stance. This process allows to train the model faster, without

increased memory demands60 so that it can run even in stan-

dard computer hardware. An alternative way would be to em-

ploy transfer learning techniques after pre-training the model

with a similar image set and fine-tuning the model weights to

new image data.61

For every batch of 1000 image samples, we use 800 for

training and 200 for validation, continuing this process until

the entire dataset is utilized. This allows us to monitor the

model’s performance during training. The current approach

does not include a separate test dataset for final evaluation;

the performance is monitored using validation data through-

out the training process. We have trained the model in three

computer architectures to assess its performance. Table III

shows the time needed to train DELFI on this dataset for ev-

ery 1000 image samples. It takes about 29hrs to run the train-

ing procedure on 8 cores of an AMD CPU, about 10hrs on 40

cores of an Intel Xeon architecture, while, for the same task,

1hr only is needed on a computer with 2 NVIDIA Graphical

Processing Units (GPUs).

After the scaling-down stage, low-resolution images (ac-

cording to the scale factor, s, shown in Table II) enter the

DELFI framework and are paired to their satisfactory reso-

lution, i.e., the ground truth counterpart. The reconstructed

image is given at the final stage of the process.

III. RESULTS

To qualitatively assess the proposed method, the investiga-

tion starts from an original high-resolution temperature field

(i.e., the ground truth image), and the reconstruction ability of

the proposed architecture is assessed over six different input

resolutions. Furthermore, the DL reconstruction performed

here is compared with the result using linear interpolation (LI)

and bicubic interpolation (BI), standard methods used in im-

age processing tasks. Both these methods interpolate the val-

ues of pixels of a lower-resolution image to create a higher-

resolution image based on the values of neighboring pixels.

To reach an ultra-scaled field resembling an array of sen-

sors, the resolution of the image used as input to the DELFI

pipeline gradually decreases. In applications where the objec-

tive is to upscale a sparse spatial field - composed of a variety

of discrete measurements coming from a sparse sensor array -

to a fine field, an alternative method that reaches satisfactory

accuracy is based on first dividing the field into sub-regions,

usually with Voronoi tesselation, and applying reconstruction

techniques on each sub-region.62

The present study expands the applicability of DELFI in

ultra-low scaling conditions, as seen from the scale factors

and the respective dimensions in Table II. Figure 4a presents

the ground truth image from a time instance near the begin-

ning of the simulation, as the cold air flows out of the AC

inlets at the ceiling and gradually fills and cools the room.

The white rectangle area, chosen for its highly-unstable be-

havior, is magnified for comparison with the following recon-

structed fields. In Fig. 4b, the scaled-down image (s = 5) is

shown in the leftmost column, followed by the LI output in

the second column, the BI output in the third column, and the

SR result derived from DELFI in the rightmost column. All

three presented reconstruction methods, i.e., the LI, the BI,

and the SR, have performed well in reconstructing the scaled

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
3
0
8
5



Preprint 6

FIG. 3. The implied super-resolution architecture, based on DELFI39, with s the scale factor that leads to a coarser resolution of the input,

high-resolution field. The scaled image is loaded to DELFI and paired with the ground truth image. The training process involves learning the

model how to map from a coarse into a finer, reconstructed field.

TABLE II. Image dimensions for every scale investigated. The value s = 1 refers to the original image dimension.

s 1 5 10 20 30 50 100

W ×H 2240×896 448×179 224×89 112×44 74×29 44×17 22×8

TABLE III. Comparison of time required to train the DELFI model

on various computer architectures.

Hardware Cores Images epochs time (mins/hrs)

AMD Ryzen

(3970X) 8 1000 30 1750/29.17

Intel Xeon

(E5-4650v2) 40 1000 30 615/10.25

NVIDIA GPU

(Tesla K40×2) 5760 1000 30 62.5/1.04

input to a close-to-the-ground truth output. Among them, the

SR-reconstructed output seems the closest to the ground truth,

with clear edges and no blurring. The BI image is also close,

while the LI has improved the pixelated field without achiev-

ing a clear output.

The SR-reconstruction results for s = 10 (in the rightmost

column of Fig. 4c) are also very close to the original region.

At the same time, satisfactory reconstruction has also been

obtained for SR for s= 20, in the rightmost column of Fig. 4d.

On the other hand, this is not the case for the LI and the BI

reconstruction methods. Highly pixelated outputs for s = 10

and s= 20 are given (in Figs. 4c-d, respectively), denoting that

these standard computer vision techniques have reached their

upper performance limit and can no longer perform well at

such highly scaled resolutions. Moreover, their reconstruction

ability is further decreased for s=30, 50, and 100, as shown in

Figs. 4e, f, and g, respectively.

For higher scale factors, s = 30 in Fig. 4e, DELFI has per-

formed marginally well, with blurring appearing in the result.

When the scaled-down factor increases to s = 50 in Fig. 4f,

the model reconstructs the blurred input to a finer SR field,

which captures only the primary (large-scale) details of the

turbulent temperature field. Practically, the input field here is

non-continuous, and it would be difficult for an SR method to

upscale it to a meaningful, continuous field that approaches

the actual temperature values. Finally, the ultra-low scale in-

put of dimensions (22× 8) shown in the leftmost column of

Fig. 4g enters the DELFI pipeline and upscales to a finer grid

that captures, to some degree, the temperature field behavior.

Although the SR result is far from the ground truth, it can still

transform the general features hidden in the "squared"-pixel

values into a continuous field.

After the cold air has been circulated inside most of the

room space, near the end of the simulation (t = 90 sec), an

additional time instance has been taken for investigation in

Fig. 5. The black rectangle in Fig. 5a is retained for compar-

ison with the reconstructed parts. The same qualitative per-

formance is obtained as in Fig. 4 for all scale factors shown.

Reconstruction is acceptable for the SR model, especially for

s ≤ 30 (see the rightmost columns of Figs. 5b-d). At the same

time, the LI reconstruction images remain acceptable only for

s= 5 (second column in Fig. 5b), failing to reproduce the tem-

perature field at the higher scales examined. The BI method

performs slightly better than LI since its reconstruction perfor-

mance remains acceptable up to s = 10. However, after that

(s > 10), its performance quickly deteriorates and becomes

poor.

Three widely used quantitative metrics that can give a clear

view of the reconstruction performance in SR tasks are the

PSNR, the SSIM, and the relative error (RE). The PSNR is a

widely used metric in image processing to quantify the quality

of a reconstructed image compared to its original version. The

RE covers common error analysis, and it is based on pixel dif-

ferences, which are independent of the underlying structures.

However, in some cases, images of physical properties might

present highly structured behavior, i.e., strong dependencies

between the pixels which carry information about the struc-

tured regions, such as eddies in turbulent flows. The SSIM

measure can capture these variations.63

The PSNR is calculated from the pixel differences between
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FIG. 4. Airflow temperature field reconstruction, from a time instance near the beginning of the simulation. (a) The ground truth image, with

a zoomed region (the white rectangle), shows the field’s details. Next, the scaled-down images are shown on the left column, along with their

reconstructed counterparts, i.e., the linear interpolated, the bicubic interpolated, and the DELFI output, respectively, for (b) s = 5, (c) s = 10,

(d) s = 20, (e) s = 30, (f) s = 50, and (g) s = 100.
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FIG. 5. Airflow temperature field reconstruction, from a time instance near the end of the simulation. (a) The ground truth image, with a

zoomed region (the black rectangle), shows the field’s details. Next, the scaled-down images are shown on the left column, along with their

reconstructed counterparts, i.e., the linear interpolated, the bicubic interpolated, and the DELFI output, respectively, for (b) s = 5, (c) s = 10,

(d) s = 20, (e) s = 30, (f) s = 50, and (g) s = 100.
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FIG. 6. Reconstruction metrics vs. the scale-down factor, s, (a)

PSNR, (b) SSIM, and (c) RE. The error bars denote the standard

deviation for each s. Lines are semilog linear fits.

the ground truth and the SR-derived images using19,64:

PSNR(XSR,XGT) = 20log

(

1
√

MSE(XGT,XSR)

)

, (12)

where XSR is the SR output, XGT the ground truth image, and

MSE the mean squared error. The SSIM refers to the struc-

tural similarity measures, such as luminance, contrast, and

structures. The comparisons, C for each feature, are combined

into the equation63:

SSIM(XSR,XGT) =[Cl(XGT,Xs)]
α [Cc(XGT,Xs)]

β

[Cs(XGT,Xs)]
γ ,

(13)

where Xs is the scaled image.

The RE is a measure of the average magnitude of the recon-

struction error relative to the ground truth, and, as a percent-

age, it can be applied to data where large variations exist.65 It

is given by:

RE (XSR,XGT) =

∣

∣

∣

∣

XGT −Xs

XGT

∣

∣

∣

∣

×100%. (14)

Reconstruction performance is calculated for each scale

factor, s, based on the three metrics (PSNR, SSIM, RE) and

compared to LI and BI reconstruction results. At first, as

shown in Fig. 6a, the PSNR values for DELFI are consis-

tently higher than the respective LI and BI values, especially

for s < 30. For s ≤ 10, PSNR> 30.0. The obtained PSNR

values are close to the range of reported values for other

architectures found in SR for fluid mechanics applications.

To mention a few, the downsampled skip-connection/multi-

scale (DSC/MS)66, the autoencoder convolutional neural net-

work (AE-CNN)67 and the multi-scale temporal path U-Net

(MST-UNET)68 have reported maximum PSNR values in the

range 30.17− 31.18. Regarding generative adversarial net-

works, which employ a more complex architecture compared

to U-Net based ones, the super-resolution GAN (SRGAN)69

has given PSNR=36.31, while the enhanced super resolu-

tion GAN (ESRGAN) has reached PSNR=37.05.27 A detailed

comparison between various SR models can be found in So-

fos, Drikakis, and Kokkinakis 39 .

Nevertheless, we must remember that in this paper, DELFI

is incorporated for ultra-scaled reconstruction tasks, starting

from s = 5 and reaching s = 100. In this direction, an ac-

ceptable PSNR value is obtained for s = 20, while the perfor-

mance is lower, and a poorer reconstruction result is obtained

for s = 30,50,100 (Fig. 6a).

Of importance is the fact that the PSNR for our SR model,

along with the respective LI and BI values, has shown a de-

creasing logarithmic dependence on the scale factor values.

At the limit of s→ 1 (i.e., the original resolution, without scal-

ing), DELFI achieves PSNR ≈ 42.0, LI reaches PSNR ≈ 32.0
and BI has PSNR ≈ 33.0. Another point is the calculated PN-

SRs for LI and BI approach DELFI-derived values for s > 30,

where high deviations from the ground truth image exist.

On the other hand, the SSIM for DELFI presents similar

logarithmic behavior (Fig. 6b), which converges to 1 as s →
1. For all scales investigated here, SSIM > 0.80. There are

no significant differences in statistical accuracy between the

SSIM calculated for DELFI and LI, BI. On the other hand, the

relative errors are significantly lower for DELFI compared to

LI and BI. In Fig. 6c, it is observed that RESR ≈ 10% for s = 5

and s = 10, RESR < 20% for s = 20, while, a maximum of

RESR ≈ 50% is taken for s = 100. In the range investigated
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here, the LI and BI start from RE > 20% at small scales and

reach RESR ≈ 50−60% for s = 100.

It is obvious that typical image processing techniques, such

as LI and BI, are limited in their applicability to highly com-

plex problems and large values of s. The need to introduce DL

methods emerges, and the proposed DELFI model can be a re-

liable choice while being faster than other SR architectures.

IV. CONCLUSIONS

A super-resolution method is applied in this paper to re-

construct an ultra-scaled temperature field into continuous to

reach a dense temperature map as close to the ground truth as

possible. Discrete temperature values from such highly pix-

elated images can be seen as sparse sensor values, and their

reconstruction to a fully detailed temperature map is the main

focus. The application concerns a CFD-simulated air ventila-

tion case with an A/C unit on the ceiling of a prototype closed

rectangle room.

Similar super-resolution methods have been widely incor-

porated in fluid mechanics applications, where 2D or 3D im-

ages being processed correspond to property fields of velocity,

pressure, vorticity, and temperature, most of the time. Low-

resolution variants of the original fields have been used to train

the deep learning networks. However, we incorporate ultra-

scaled-down fields to train and validate the implied model,

DELFI. The coarse fields have been scaled 100 times from

the original dimensions. Nonetheless, these ultra-coarse fields

have produced performance metrics in the same order as in

other studies in the literature where the scaling factor ranges

only between 2 and 5. Here, we present increased reconstruc-

tion performance with a scaling factor of 20, while acceptable

performance is obtained for 30-time scaled-down images.

The performance measures shown include the peak signal-

to-noise ratio, the structural similarity index, and the rela-

tive error. Of interest is that these measures follow a semi-

logarithmic behavior vs the scale-down factor. Results have

shown that DELFI is superior to standard computer vision

techniques, such as linear and bicubic interpolation, in all

cases investigated. Considering that DELFI has been success-

fully employed in reconstructing velocity and pressure fields

in other fluid mechanics applications, we believe it could pose

a fast and reliable scheme to tackle complex, ill-posed prob-

lems like turbulent flow field estimation.

Future research should consider combining the model with

actual data obtained from sensors. As a step further, experi-

mental validation with images from a thermal camera would

enhance the present research. The final aim is to exploit a

low-resolution camera in place of an array of sensors to ac-

curately provide a detailed temperature map in buildings or

even exploit satellite images to monitor a property of interest

on Earth’s surface.
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Appendix A: WENO implementation

To address potential numerical instabilities due to

the process of choosing an essentially non-oscillatory

(ENO) stencil70, Weighted ENO (WENO) methods were

introduced49,50. WENO schemes use a convex combination

of all the ENO candidate stencils such that the numerical flux

is approximated with the higher order of accuracy in smooth

regions while still retaining the ENO property in the flow re-

gions near discontinuities; see71,72 for an overview and further

references. For WENO implementations on structured grids,

when the solution is locally smooth enough, the convex com-

bination of the stencils of a rth-order ENO scheme results in a

(2r−1)th-order WENO scheme49.

Aiming to achieve a balance between accuracy and stabil-

ity, we enhance the WENO schemes of 3rd and 5th-order of

Jiang and Shu 50 (r = 2,3) and 7th, 9th and 11th-order of Bal-

sara and Shu 51 (r = 4,5,6) by combining the mapped WENO

approach of Henrick, Aslam, and Powers 73 (WENO-M) and

the relative total variation limiter approach of Taylor, Wu, and

Martín 74 (WENO-RLTV). WENO-M recovers the loss of ac-

curacy occurring near smooth critical points. WENO-RLTV

reduces the numerical dissipation by using the optimal lin-

ear weights in sufficiently smooth regions instead of nonlinear

linear smoothness-indicator-based weights. The numerical re-

construction can be performed at conservative, characteristic,

or primitive variables. The reconstruction of the conservative

variables is more common in the literature. However, past re-

search has shown that such practice can lead to inaccuracies in

capturing shock waves; see Zanotti and Dumbser 75 and ref-

erences therein. Similar to other authors76, we have opted to

use the primitive variables in the high-order numerical recon-

struction. The characteristics-based variables would be more

expensive computationally.

We present below a detailed description of the WENO pro-

cedure implemented to obtain the left reconstruction, qL
i+1/2

,

of the primitive variables, q = [ρ,u, p]T , at cell face i+1/2:

1. The full (left and right reconstruction) stencil
(

SG
i+1/2

)

is normalized, per variable, according to the transfor-
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mation function:

SGz
i+1/2

=
SG

i+1/2
−gmin

gmax
(A1)

where

SG
i+1/2 = (qi−r+1, ... ,qi+r)

and

gmin = min
(

SG
i+1/2

)

−1

gmax = max
(

SG
i+1/2 −qmin

)

and the new kth candidate stencil for the left reconstruc-

tion, containing r cell center values, is given by:

SL
i+1/2;k = SGz

i+1/2
[i− r+1+ k, ... , i+ k]

where k = 0, ... ,r − 1. Eq. (A1) normalizes the val-

ues of the candidate stencils before the estimation of

the smoothness indicators (IS) in such a way that (i)

the maximum value of the entire stencil becomes equal

to one, i.e. max(SGz
i+1/2

) = 1, (ii) the minimum value

takes a positive and nonzero value, i.e. min(SGz
i+1/2

)> 0,

and (iii) the value range scales as initially relative to the

maximum. By definition gmax is always positive and

non-zero; hence Eq. (A1) will never result in an un-

defined operation and cause an exception. Using the

above normalization of the total stencil values, per vari-

able, is found to (i) prevent negative WENO smooth-

ness indicator values, (ii) reduce numerical dissipation,

and (iii) simplify the application of the proceeding step.

The stencil normalization was found not to affect the

MUSCL-type slope limiters.

2. Next, a modified version of the relative total variation

(TV) limiting procedure of Taylor, Wu, and Martín 74 is

implemented. The TV of each kth candidate stencil is

calculated according to:

TVk (Si;k) =
r−1

∑
l=1

|qi−r+k+l+1 −qi−r+k+l | (A2)

Eq. (A2) is then used to obtain the maximum TV ratio

between the candidate stencils:

R(TV) =
max(TVk)

min(TVk)+ ε
(A3)

If all of the stencils contain significant discontinuities,

then the value of R(TV) can be incorrectly small, i.e.

R(TV) ≈ 1. Thus, an additional criterion is introduced

to avoid such an occurrence. The linear weights are

used provided the following two conditions are satis-

fied:

if
[

R(TV)< ATV
RL &

max(TVk)< BTV
RL

]

then

ωr
k =Cr

k (A4)

According to Taylor, Wu, and Martín 74 , ATV
RL = 5, while

for the second condition, BTV
RL = 0.2(r− 1), where r is

the order of the polynomials used in the 2(r−1)th-order

WENO. In practice, however, r = 2 is typically used.

Note that the equation for BTV
RL is applicable only if

the preceding pre-treatment/re-scaling of the candidate

stencils is carried out; otherwise, it must be multiplied

by qmax. In essence, the second condition allows for an

average TV of 20% between two neighbouring cells of

the local stencils (SG
i ) maximum variable value, but this

value can be modified if necessary. Wu and Martin 77

used a value of BTV
RL = 0.2 for their 4th-order bandwidth-

optimized WENO implementation in their DNS study.

Eq. (A4) assumes that for the linear weights the condi-

tion ∑r−1
l=0 Cr

l = 1 is always satisfied.

3. If condition Eq. (A4) is not satisfied. nonlinear near

weights based on the smoothness indicators of each

candidate stencil are computed according to the follow-

ing two steps:

Ωr
k =

Cr
k

(ISr
k)

p + ε
, ωr

k =
Ωr

k

∑r−1
l=0 Ωr

l

(A5)

where p = r and ε = 10−41.

The standard WENO weights obtained in Eq. (A5) are

modified according to the mapped WENO (WENO-M)

approach of Henrick, Aslam, and Powers 73 as:

ω̃r
k =

Ω̃r
k

∑r−1
l=0 Ω̃r

l

(A6)

where, using the alternate formulation of Feng, Huang,

and Wang 78 , the mapped weights are given by:

Ω̃r
k =Cr

k +
(Ωr

k +Cr
k)

K+1A

(Ωr
k −Cr

k)
KA+Ωr

k(1−Ωr
k)

(A7)

and setting A = 1 and K = 2 results in the original map-

ping function73.

4. The reconstructed scaled variable value at the left-side

of cell-face i+1/2 is given by:

qL
i+1/2 =

r−1

∑
k=0

[

ω̃r
k f (q)r

k

]

(A8)

where

f (q)r
k =

r−1

∑
l=0

αr
k;l qi−r+k+l+1 (A9)

5. Finally, due to the initial “normalizing” of the stencil in

step 1, the reconstructed values obtained using Eq. (A8)

need to be “re-scaled” according to:

qL
i+1/2 = qL

i+1/2 gmax +gmin (A10)

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
3
0
8
5



Preprint 14

WENO reconstruction can lead to spurious oscillations if

two or more shocks are too close to each other and WENO

cannot choose a single smooth stencil. To remedy this prob-

lem, a procedure first introduced by Harten et al. 79 is adopted.

If the reconstructed density and pressure values differ too

drastically from their cell-center average values, the order of

the WENO reconstruction is reduced. After completion of the

left and right reconstruction procedures at cell-face i+ 1/2,

the left and right reconstructed density and pressure values

are compared against their respective left and right cell-center

values:
∣

∣

∣
ρL

i+1/2 −ρi

∣

∣

∣
> C−

O
or

∣

∣

∣
ρR

i+1/2 −ρi+1

∣

∣

∣
> C−

O

(A11)

where the order reduction threshold constant is set equal to

C−
O
= 0.7. If the condition in Eq. (A11) is met, then the or-

der of the WENO scheme is reduced according to (r − 1).
The reconstruction procedure is then repeated for all variables,

and the condition is rechecked. The process is repeated until

Eq. (A11) is no longer satisfied. For example, assuming the

condition is repeatably met, a 9th-order WENO would first re-

duce to 7th-order, then to 5th, 3rd, and finally to the 2nd-order

MC MUSCL scheme. Titarev and Toro 80 showed that using

the above procedure does not degrade the high order of accu-

racy for sufficiently smooth solutions.

Appendix B: HLLC approximate Riemann solver

implementation

The Riemann problem is solved here using the so-called

“Harten, Lax, van Leer, and (the missing) Contact” (HLLC)

approximate Riemann solver of Toro, Spruce, and Speares 52 .

More specifically, the adaptive non-iterative Riemann solver

(ANRS) variant proposed by Toro 81 (see §9.5.2) is imple-

mented. The following sequence details the approximate

HLLC Riemann solver procedure implemented:

1. To ensure high order near the boundaries for high-order

FVM codes, typically, the ghost-cell method is used

to apply the boundary conditions (BC). However, even

after carefully programming the boundary conditions

and reconstruction procedures, computer rounding er-

rors can persist and give rise to differences between the

left and right reconstructed states. Therefore, to ensure

the appropriate flux, we modify the left and right recon-

structed states for the following BCs: symmetry plane

(inviscid wall), heated (constant temperature) wall, and

adiabatic (zero heat-flux) viscous (no-slip) wall.

For a symmetry plane, the no penetration condition is

implemented for both advective and acoustic waves us-

ing the procedure described by Algorithm 1.

In the case of a viscous wall, Algorithm 2 is used in-

stead. For an isothermal wall, the temperature at the

ghost cells is linearly interpolated from the interior do-

main and the wall. In this case, it is advisable to restrict

if Left BC Symmetry then

ρL = ρR;

pL = pR;

uL = uR −2(uR · n̂)n̂ ;

else if Right BC Symmetry then

ρR = ρL;

pR = pL;

uR = uL −2(uL · n̂)n̂;

Algorithm 1: Ensure symmetry BC flux in HLLC.

the interpolated temperature range of values to be only

positive (T ∈ R>0), i.e. Tghosts > 10−15, which reduces

the likelihood of a non-physical solution from manifest-

ing.

if Left BC Viscous Wall then

pL = pR;

if Wall Temperature then ρR = pR/(RsTW);
ρL = ρR;

uL = uR = 0;

else if Right BC Viscous Wall then

pR = pL;

if Wall Temperature then ρL = pL/(RsTW);
ρR = ρL;

uL = uR = 0;

Algorithm 2: Ensure viscous wall BC flux in HLLC; if

Wall Temperature true isothermal, else adiabatic.

2. An initial estimate of the pressure in the Star Region,

that is, the region defined in-between the nonlinear near

convective wave-speeds (or characteristics), can be ob-

tained according to82:

p∗ = max
(

0, ppvrs

)

(B1)

which for curvilinear coordinates ppvrs is obtained ac-

cording to:

ppvrs =
1

2

[

pL + pR +
(

u⊥L −u⊥R

)

ρ̄ s̄
]

ρ̄ = (ρL +ρR)/2 , s̄ = (sL + sR)/2

(B2)

where the speed of sound is defined as s =
√

γ p/ρ and

u⊥ = u · n̂ is the magnitude of the velocity normal to the

cell-face.

The “averaged” value of p∗ given by Eq. (B1) is en-

hanced by taking into account the local conditions.

The ANRS approach81 introduces two conditions as a

means to avoid unnecessary computations, i.e. updat-

ing the value of p∗ obtained by Eq. (B1) with one that

is more accurate. The first condition requires that the

ratio between the maximum and minimum local recon-

structed pressures is more significant than a predeter-

mined constant, i.e.

Q = pmax/pmin > Quser
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where pmin = min(pL, pR), pmax = max(pL, pR) and it

is recommended that Quser = 2. The other condition

requires that p∗ does not lie between pmin and pmax,

i.e. p∗ < pmin or p∗ > pmax. However, similarly to

non-differentiable (reconstruction) limiters, they hinder

convergence. Instead, the following relation is used im-

mediately after Eq. (B1):

p∗ =



















[

sL + sR −
γ−1

2

(

u⊥R −u⊥L
)

sL/pz
L + sR/pz

R

]
1
z

if
(TRRS)

p∗ ≤ pmin

gL pL +gR pR − (u⊥R −u⊥L )

gL +gR

if
(TSRS)

p∗ > pmax

where

z =
γ −1

2γ
, AK =

2

(γ −1)ρK

, B =

(

γ −1

γ +1

)

pK

gK =

(

AK

p+BK

)1/2

, K = L,R

The abbreviations TRRS81 and TSRS81,83 stand for the

Two-Rarefaction Riemann Solver and Two-Shock Rie-

mann Solver, respectively.

3. Next, we compute the wave-speed estimates according

to Toro, Spruce, and Speares 52 :

SL = u⊥L − sLqL

SR = u⊥R + sRqR

(B3)

where

qK =











1 if p∗ ≤ pK
[

1+
γ +1

2γ

(

p∗

pK

−1

)]1/2

if p∗ > pK

(B4)

Eq. (B3) slightly increases the numerical diffusion as

it permits a greater range but has favourable stability

in very high-speed flows and particularly near strong

shock-waves.

Using the above, the intermediate “missing” wave-speed,

S∗, and associated HLLC fluxes are computed according to

Toro 81 .

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
1
3
0
8
5


	Ultra-scaled black deep learning black temperature reconstruction  in turbulent airflow ventilation
	Abstract
	Introduction
	Models and Methods
	Equations
	Numerical solver
	Flow setup
	Data acquisition
	Super-resolution architecture

	Results
	Conclusions
	Acknowledgments
	Data availability
	References
	WENO implementation
	HLLC approximate Riemann solver implementation


