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Abstract— Cruise ships are a popular means of vacation for 
millions of people every year. However, they present significant 

challenges, especially in terms of addressing the risk of 

outbreaks on board. Among various pathogens, norovirus is the 

most prevalent cause of gastrointestinal illness on cruise ships, 

posing serious health risks to both passengers and crew. 

Onboard recreational facilities such as swimming pools and pool 

parties can create conditions where standard hygiene protocols 

are not consistently enforced, increasing the risk of norovirus 

transmission. Motivated by these challenges, this paper presents 

a novel short-term risk assessment system for norovirus 

transmission in swimming pools of cruise ships using data from 

multiple sensors, and a fuzzy inference model. Traditional data-

driven models are typically limited by the unavailability of 

training data in such environments. Instead, the proposed 

approach adopts a knowledge-based design, utilizing domain 

expertise and literature data, while incorporating sensor-driven 
inputs, in alignment with a recently introduced smart ship 

design. The system was validated using a real documented 

outbreak and tested under various simulated scenarios of a 

swimming pool derived from cruise ship schematics,  

demonstrating its practical relevance and adaptability across 

configurations. 

Keywords—norovirus, waterborne disease, risk assessment,  

fuzzy logic, knowledge-based system, sensor-driven system. 

I. INTRODUCTION  

Norovirus is a leading cause of gastroenteritis outbreaks 

on cruise ships, where confined spaces and shared amenities 
facilitate rapid transmission [1]. Despite the fact that 

transmission of infectious agents through water is generally 
rare under normal circumstances, norovirus outbreaks on 
cruise ships are a significant public health concern [1], [2]. 

Moreover, norovirus is highly contagious, as even 
asymptomatic individuals can shed large quantities of the 
virus, with studies reporting that a single gram of feces may 

contain up to 100 billion viral particles [3], while only a few 
particles are sufficient to cause an infection [4]. Therefore, 

asymptomatic cases can be detrimental to the spread of a 
highly infectious virus such as norovirus, since they might 

not get detected by ship personnel [5]. 

Cruise ships include a variety of recreational activities, 
such as pool parties, that can create situations where standard 

safety protocols may not always be strictly followed [6]. 
Recreational water treated with chlorine levels above 1 mg/L 

can eliminate more than 99% of norovirus particles within 
seconds [7]. Nevertheless, outbreaks of norovirus have been 
attributed to chlorine levels below the safety guidelines that 

are designated by the Center for Diseases Control (CDC), 
such as in [8]. In this incident, reduced chlorine levels can 

lead to a norovirus outbreak caused by an asymptomatic case. 
Specifically, the chlorine concentration dropped to a critical 
level (< 1 mg/L), placing it in a “gray zone” where 

disinfection proved ineffective, allowing the virus to thrive 
and spread [8]. Considering the above, it can be inferred that 
a smart system capable of monitoring the presence of 

waterborne infectious diseases in swimming pools could 
provide valuable assistance in reducing the risk of disease 

transmission onboard. Smart technologies, including smart 
sensors, have been proven to be useful tools for monitoring 
the transmission of infectious diseases [9]. These 

technologies can be utilized to identify early symptoms of a 
disease and automate the monitoring process, while 
providing valuable information to ship crew and 

manufacturers. This results in more informed and adaptive 
policy-making when considering safety guidelines related to 

waterborne diseases.  

Data-driven approaches, such as machine learning models, 
are commonly used in health-related risk prediction tasks, yet 
they require extensive training datasets. As such, their 

application in assessing short-term disease transmission 
scenarios on cruise ships is constrained by the limited 
availability of outbreak data. In contrast, knowledge-based 

approaches offer a viable alternative in data-scarce 
environments. These methods leverage domain expertise, 
e.g., from domain experts and/or literature-derived insights to 

support decision-making and can be further enhanced 
through the integration of sensor-driven data, providing a 

more context-aware basis for risk assessment. Fuzzy logic is 
a powerful tool for handling uncertainty, incomplete data, and 
imprecise medical information [10]. Only a limited number 

of studies have been presented aiming to deal with 
waterborne infectious diseases using fuzzy approaches. 
Recent paradigms include, an adaptive neuro-fuzzy inference 

system was proposed for predicting norovirus in drinking 
water supply, based on water quality parameters such as 

water pH, turbidity, conductivity, temperature and rain [11]. 
A multi-criteria decision-making model that integrates Fuzzy 
Analytic Hierarchy Process (FAHP) with geospatial analysis 

was presented aiming to identify zones vulnerable to 
waterborne diseases [12]. However, the application of fuzzy 
logic to short-term disease transmission on cruise ships 

remains an open challenge.  

To this end, considering the need for early prevention of 
norovirus spread in crowded environments with water 

facilities, such as in cruise ships, a  novel system based on  



 
Fig. 1. Overview of the proposed system. 

sensor data and knowledge-based fuzzy reasoning is 

proposed.  

The system aims to assess the short-term transmission 

risk of norovirus in swimming pools, which can be very 
crowded, especially during the summertime. The proposed 
system utilizes data derived from different smart sensors, e.g., 

RNA sensors and chlorine sensors, to assess the risk of 
waterborne diseases. These sensors are integrated into a novel 

smart ship design proposed in the context of the HS4U 1 
project, which investigates methods for smart ship design, to 
provide enhanced passengers’ health safety. The proposed 

fuzzy rule-based system considers several risk factors based 
on data provided by available smart sensors and information 
derived from the literature [9]. Compared to standard 

epidemiological studies that focus on long-term disease 
transmission and generic population dynamics [13], [14], this 

study analyzes the short-term effects of identified risk factors 
using a  sensor-driven, fuzzy inference system, tailored to 
context-specific and operationally relevant conditions. To the 

best of our knowledge, this is the first time that a fuzzy rule-
based system combined with smart sensors has been used to 
assess the risk of waterborne disease transmission in 

swimming pools. The main contributions of this study 

include the following: 

• A novel knowledge-based system assessing the short-
term risk of waterborne diseases in swimming pools. 

• Identification of risk factors that are early indicators of 
waterborne infectious diseases and analysis of their 
impact on short-term transmission. 

• Experiments for validating the proposed system on a real-
case study and for different scenarios with various 

swimming pool configurations. 

The remainder of this paper is organized into three sections. 

The proposed system is described in Section II. Section III 

includes the experimental setup, and the experiments  

 
1https://hs4u.eu/  

TABLE I.  RISK FACTORS AND THEIR IMPACT ON WATERBORNE DISEASE  

TRANSMISSION. 

Risk Factors 
Impact on Transmission 

Risk 

1. Chlorine Levels  (mg/L) Lower ↓ Higher ↑ 

2. Median Age  (years) Lower ↑ Higher ↓ 

3. Occupancy (number of passengers) Lower ↓ Higher ↑ 

4. Time of Exposure  (min) Lower ↓ Higher ↑ 

↓ Reduces risk, ↑Increases risk 

conducted in this research are presented in Section IV. Finally, 
conclusions as well as future research directions are discussed 

in Section V. 

II. METHODS 

An overview of the proposed system is presented in Fig. 1. 

As illustrated, sensors, such as RNA sensors and chlorine 
sensors, are utilized to monitor areas of interest within the 
ship, (monitored environments). The system is also linked 

with the ships’ information system that can provide further 
details of the passengers occupying each monitored 

environment. The collected data are analyzed, and the 
decision-making process is then performed, aiming to infer 
the risk of waterborne disease transmission. The resulting 

waterborne disease transmission risk is linguistically 
characterized using defined fuzzy sets, as presented in this 
section.  

A. Risk Factor Analysis 

Based on the available sensors included in the smart ship 

design proposed in [9], and information retrieved from the 
literature [15–18], the following risk factors were identified: 

i) chlorine levels (CL), ii) median age (MA), iii) time of 
exposure (ET) of passengers to the virus, and iv) occupancy 
(OCC), i.e., number of passengers in a specific area. These  

factors constitute important indicators of norovirus 
transmission in water [18] and their impact is summarized in 

Table I. 

Chlorine is the most important countermeasure against 

waterborne disease transmission in swimming pools. 
According to the literature, 99.2% of norovirus particles are 
eliminated after 4.2 s of contact with treated water that   

chlorine levels > 1 mg/L. However, concentrations below 1 
mg/L have not been thoroughly investigated and, according 

to [8], are considered ineffective in preventing the 
transmission of highly infectious diseases like norovirus in 
swimming pool environments. In the investigated outbreak 

[8] , chlorine levels were reported to vary between 0.5 and 1 
mg/L, which were designated as a gray area. In addition, the 
CDC has  also designated as safe, chlorine levels between 1 

and 3 mg/L [17]. Chlorine concentrations above 3 mg/L are 
considered more effective at eliminating waterborne 

pathogens; however, levels exceeding 5 mg/L are deemed 

hazardous to human health [17].  

Furthermore, the age of the passengers is correlated with 

the risk of waterborne disease transmission. Based on the 
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Fig. 2. Fuzzy rules for estimation of waterborne disease transmission on cruise ships.  

outbreak analyzed in  [8], the risk of infection was notably 

higher  among  individuals  under  the  age  of 16.   

Moreover, several studies have also highlighted that 
children are more susceptible to water-mediated infections, 

since they consume more water while swimming, compared 
to adults [16], [18]. Furthermore, the exposure time of 

individuals in waters that are contaminated with pathogens is 
associated with higher risk of infection [15]. Therefore, in the 
cases of norovirus transmission, the longer the exposure of 

the individuals the higher the transmission risk of the virus. 
Furthermore, the occupancy, i.e., the total number of 
passengers, is also a risk factor when investigating water-

mediated transmission of infectious disease. In detail, the 
World Health Organization (WHO) has designated specific 

guidelines to ensure safety and suggests a maximum capacity 
of bathers for swimming pools. The WHO dictates the 
maximum capacity of a pool can be calculated based on the 

surface area and depth of the pool as follows [7]: 

 𝐵 =
𝐿∗𝑊

𝑏𝑙
 () 

where B is the maximum capacity of the pool, L is the length 

of the pool, W is the width of the pool. The bather load 𝑏𝑙 can 

be defined as follows: 

 𝑏𝑙 = {

 2.2 𝑚2, 𝑓𝑜𝑟 𝑑𝑒𝑝𝑡ℎ < 1.0 𝑚

 2.7 𝑚2 ,𝑓𝑜𝑟  1.0 < 𝑑𝑒𝑝𝑡ℎ <  1.5 𝑚

 4.0 𝑚2, 𝑓𝑜𝑟 𝑑𝑒𝑝𝑡ℎ > 1.5 𝑚

 () 

The risk regarding the waterborne transmission for the 

validation scenarios is calculated as follows: 

 𝑅𝐺𝑇 =
𝑃

𝑇
 () 

where 𝑃 are the number of infected passengers, and  𝑇 is the 

total number of passengers in a pool. 

B. Decision-Making Process 

The processed data are assessed using a decision-making 

module, which evaluates the waterborne disease transmission 
risk in the monitored environment based on the identified risk 

factors.  Each monitored environment is then assigned with a 
risk level, such as “Low” (L), “Medium” (M), and “High” 
(H). In this paper, a  decision-making system based on fuzzy 

logic is proposed, aiming to perform the risk assessment of 
norovirus in swimming pools of cruise ships. The proposed 
system is developed based on Mamdani fuzzy inference, 

which is used as a baseline yet effective methodology [19], 
[20]. Unlike other methods, the Mamdani’s method does not 

require extensive data and provides explanatory results that 

can be easily understood. 



To define the transmission risk based on the Mamdani’s 
method, the following process is performed; the input 
variables are initially fuzzified using membership functions 

designed considering domain knowledge, as described in the 
following section. This fuzzification process transforms crisp 
input values into degrees of membership, enabling the system 

to handle data uncertainty and imprecision. The relationships 
between the identified risk factors and the output risk are 
inferred, using ‘IF-THEN’ rules. In this study, the fuzzy rule 

base was constructed by systematically combining the 
selected input factors. In the current study, the fuzzy rules 

were generated through a combination of the considered 
factors as well as expert knowledge and information derived 
from the literature [19].  Finally, a  total number of 66 rules 

have been elicited and empirically selected by domain experts 
(Fig. 2).  

The activation of these fuzzy rules depends on the specific 
input values and the logical operators. Each rule contributes 

to the generation of output membership functions, denoted as 

(𝑀𝑗 ), which are aggregated and defuzzified, resulting in a 

crisp final output, using the following equation:  

𝑀𝑗  = ⋁(𝐴(𝑥) ∧ 𝐵(𝑧) ∧ 𝐶(𝑑) ∧ 𝐷(𝑘))
𝑖

𝑛

𝑖=1

 (4) 

where “⋁” and “ ∧” correspond to the fuzzy union and 
intersection operations. Furthermore, 𝑗 = 1, . . , 𝑀, where 𝑀 
is the total number of activated fuzzy rules; the variables 

𝑥, 𝑧, 𝑑,𝑘  are the input risk factors, i.e., chlorine levels, 
median age, time of exposure of passengers to the virus, and 

occupancy, respectively. Each variable is defined by a 

corresponding fuzzy set 𝐴𝑖, 𝐵𝑖,𝐶𝑖, 𝐷𝑖, respectively, with 𝑖 =
1, …, 𝑛.  

An indicative example of a fuzzy rule is the following: 
“IF Chlorine Level is Low AND Median Age is Low AND 

Occupancy is Low AND Time of Exposure is Low THEN 

Risk is Medium.” 

III. EXPERIMENTAL SETUP 

To assess the risk of waterborne disease transmission, 
scenarios with sensors placed in pool areas (subsection III-A) 
were considered. The effectiveness of the defined fuzzy rules 
was validated using a norovirus outbreak scenario reported in 
the literature (subsection III-B). Furthermore, fuzzy sets were 
defined for the linguistic characterization of the inferred 
transmission risks (subsection III-C) were defined. 

A. Sensors 

The deployment and impact of the sensors was simulated 
to evaluate the effectiveness of the proposed system, in 
different experimental scenarios.  The simulation of sensor 
deployment was guided by cruise ship schematics to ensure a 
representative spatial configuration of pool areas. This 
approach reflects typical onboard conditions relevant to health 
risk assessment, while maintaining flexibility in how sensor 
integration could be realized in practice, and aligns with the 
broader smart ship design principles explored in the HS4U 
project [21].  Furthermore, the following three sensors were 
considered: a) an RNA sensor was deployed in the examined 
pool to detect the presence of pathogens, providing 
information regarding potential contamination events; b) a 
chlorine sensor was used to monitor the concentration levels 

of chlorine in the water; c) a Radio-Frequency Identification 
(RFID) sensor was implemented to collect information of 
passengers, including the number of people in a monitored 
environment, their time duration of exposure, and their 
median age. The combined use of these sensors allowed for a 
more comprehensive and effective analysis of the identified 
risk factors influencing short-term waterborne disease 
transmission. 

B. Swimming Pool Scenarios 

The generated fuzzy rule set was validated based on the 

norovirus outbreak reported in a swimming pool area 
described in [8]. The dimensions of the pool of this validation 
scenario were 25 m length, 12.5 m width and 1.2 m depth. 

Subsequently, the surface area of the pool was 312.5 m2 and 

𝑏𝑙 for a pool with 1.2 m depth is 2.7 m 2, thus using these 
parameters in (1), (2) the maximum capacity of the pool, in 

terms of number of passengers, is equal to 115.   

 The effectiveness of the proposed system was also 

evaluated in various test scenarios, using the same risk factors 
and a set of different pool characteristics, compared to the 
validation scenarios. Specifically, the size of the current pool 

was 16.5 m length, 8.5 m width and 1.6 m – 1.8 m depth. 
Given that the surface area of the pool is 140.25 m² and the 

𝑏𝑙 for a pool with an average depth of 1.7 m is 4.0 m², the 
maximum capacity, based on (1) and (2), is calculated to be 
35 passengers. The resulting fuzzy sets for the pools used in 

the experiments are presented in the following subsection. 

C. Fuzzy Set Construction 

Based on the analysis conducted in subsection II.A, four 

risk factors were identified according to the available sensors 

and information provided by the considered smart ship 

design. Each risk factor is represented by fuzzy sets that 

correspond to linguistic values, such as “Low”, “Medium”, 

and “High”. A higher degree of membership towards a 

specific fuzzy set signifies an increased or decreased risk of 

the waterborne disease transmission, based on the risk factor 

analysis (II-A). To linguistically characterize the 

transmission risk, the fuzzy sets presented in Tables II and 

III, were defined.  

TABLE II.  FUZZY SETS OF THE RISK FACTORS FOR THE POOL OF THE 

VALIDATION SCENARIOS. 

Fuzzy 

Set 
CL MA OCC ET Risk 

Low [0, 1] [1, 33] [2, 59] [15, 45] [0, 0.3] 

Med. [0.5, 1.5] [17, 49] [30, 87] [30, 60] [0.1, 0.5] 

High [1, 3] [33, 65] [59, 115] [45, 120] [0.3, 1] 

TABLE III.  DEFINED FUZZY SETS OF THE RISK FACTORS FOR THE POOL OF 

THE TESTING SCENARIOS.  

Fuzzy 

Set 

Chlorine 
Level 

(mg/L) 

Median 

Age 
Occupancy 

Exposure 

Time 
R 

Low [0, 1] [1, 33] [2, 12] [15, 45] [0, 0.3] 

Med. [0.5, 1.5] [17, 49] [6, 23] [30, 60] [0.1, 0.5] 

High [1, 3] [33, 65] [12, 35] [45, 120] [0.3, 1] 



IV. EXPERIMENTS AND RESULTS 

A. Validation Scenarios 

To evaluate the effectiveness of the defined fuzzy rules, 

different scenarios comprising various values of the 
identified risk factors were examined for the two types of 

swimming pools. Experiments were conducted for all 
combinations of the four risk factors, each characterized by 
three possible linguistic values, resulting in a total of 81 

different scenarios. A representative subset of these scenarios 
is presented in Tables V-VI. The parentheses contain the 
respective linguistic values, indicating the membership of a 

risk factor to a respective fuzzy set (L)ow, (M)edium, or 

(H)igh (Tables II-III). 

 Using the outbreak data reported in [8] as a reference, the 
defined fuzzy rules were applied to validation scenarios; only 

the participants who attended the Halloween party were 
considered, as the scope of the present study is to assess the 

short-term risk of waterborne disease transmission. 
Subsequently, it was reported that 58 participants attended 
the Halloween party, which lasted 120 minutes. Out of the 58 

participants, 46 were reported to be infected, resulting in a 
disease transmission risk of 0.79, using (3), linguistically 
characterized as “High” (Table II). The median age of 

participants was equal to 25, and during that time the chlorine 
levels were reported to be 0.29 mg/L. Furthermore, 

participants spent 60 to 120 minutes inside the pool, thus a 
median time of 90 minutes of exposure time was considered. 
Based on Table IV, it can be observed that for a chlorine level 

of 0.29 mg/L, a median age of 25, occupancy of 58 
participants, and 90 minutes of exposure, the system inferred 
a risk equal to RF =0.78 (“High”), which was in close 

agreement with the ground truth, i.e., RGT = 0.79 (“High”).  

Additional experiments were conducted to observe the 
response of the system for other scenarios of detection of 
norovirus in the same swimming pool (Table V).  Regarding 

the chlorine level as a risk factor, its correct regulation 
significantly reduces the risk of disease transmission [8], as 

also confirmed by the experiments conducted in this study. 
Specifically, adequate chlorine levels of 3 mg/L result to a 
“Low” risk of transmission, even in scenarios of a “Medium” 

pool occupancy with passengers of a “Low” median age 
(scenario no. 2), factors that have been shown to be associated 
with a “High” risk of transmission (Table I). In addition, a 

“Low” median age increases the transmission risk especially 
when combined with “High” occupancy and exposure time 

(scenarios no. 1 and 4). Furthermore, “High” exposure time 
result to “High” transmission risk (scenario no. 5), especially 
when combined with “High” occupancy (scenarios no. 1 and 

4).  

B. Experiments on Swimming Pools of Cruise Ships 

Multiple experiments were also conducted on a  ship pool 
of a cruise ship, described in III-B, using various risk factor 
combinations, and are presented in Table VI . The 

experiments revealed that “Low” chlorine levels consistently 
resulted in “Medium” and “High” risk values of disease 

transmission, even when the median age was “Low” or 
“Medium” (no 1, 4). For “Medium” chlorine levels, the 
system inferred “Low” risk value of waterborne disease 

transmission (no. 2, 3). 

TABLE IV.  VALIDATION  RESULTS BASED ON THE CASE STUDY [8].                                                                                                                     

No CL  MA OCC ET RF RGT 

1 
0.29 

 (L) 

25  

(L) 

58  

(M) 

90 

 (H) 

0.78 

(H) 

0.79 

 (H) 

TABLE V.  RISK ASSESSMENT OF NOROVIRUS DISEASE TRANSMISSION ON 

CRUISE SHIPS USING THE DEFINED FUZZY RULES (VALIDATION SCENARIOS). 

No CL  MA OCC ET RF 

1 
0.50 
(L) 

20 
(L) 

100 
(H) 

80 
(H) 

0.76 
(H) 

2 
3 

(M) 
5 

(L) 
55 
(M) 

20 
(L) 

0.15 
(L) 

3 
3 

(M) 

55 

(H) 

55 

(M) 

20 

(L) 

0.15 

(L) 

4 
0.70 
(L) 

40 
(M) 

102 
(H) 

110 
(H) 

0.71 
(H) 

5 
0.80 
(M) 

30 
(M) 

34 
(L) 

110 
(H) 

0.53 
(H) 

6 
0.70 

(L) 

40 

(M) 

102 

(H) 

40 

(M) 

0.62 

(H) 

7 
0.80 
(M) 

30 
(M) 

34 
(L) 

45 
(M) 

0.19 
(L) 

8 
0.70 
(L) 

40 
(M) 

102 
(H) 

20 
(L) 

0.59 
(H) 

9 
0.80 

(M) 

30 

(M) 

34 

(L) 

20 

(L) 

0.14 

(L) 

10 
0.50 

(L) 

20 

(L) 

100 

(H) 

20 

(L) 

0.59 

(H) 

TABLE VI.  RISK ASSESSMENT OF NOROVIRUS DISEASE TRANSMISSION ΙN 

A SHIP’S SUIMMING POOL USING THE DEFINED FUZZY RULES (TESTING 

SCENARIOS). 

No CL  MA OCC ET RF 

1 
0.50 
 (L) 

20  
(L) 

21  
(Μ) 

80  
(H) 

0.76  
(H) 

2 
3 

 (M) 

5 

 (L) 

21  

(Μ) 

20 

 (L) 

0.15  

(L) 

3 
3  

(M) 
65 

 (H) 
10  
(L) 

20  
(L) 

0.15 
 (L) 

4 
0.70 
 (L) 

40  
(M) 

9 
 (L) 

110 
 (H) 

0.57  
(H) 

5 
0.80 

 (L) 

30  

(M) 

31  

(H) 

110 

 (H) 

0.59  

(H) 

6 
0.90 

 (Μ) 

10 

(L) 

15 

 (M) 

45 

 (M) 

0.26 

(Μ) 

7 
0.92 
 (Μ) 

30  
(M) 

15  
(Μ) 

45 
 (M)  

0.15 
(L) 

8 
0.50 

 (L) 

20  

(L) 

21  

(Μ) 

20 

(L) 

0.53  

(H) 

9 
1 

(M) 

5 

(L) 

21 

(M) 

40 

(M) 

0.21 

(M) 

10 
1 

(M) 
65 
(H) 

21 
(M) 

40 
(M) 

0.19 
(L) 

 

For scenarios with improperly regulated chlorine levels, such 
as "Low" and “High” chlorine levels (scenarios no. 1, 4), 

norovirus transmission is "High". Furthermore, “High” 
exposure time result to “High” waterborne transmission risk 

(no. 4, 5), 

By comparing the results between the validation pool and 

the ship pool, we can see that the proposed fuzzy rule‑based 



approach adapts well to different physical settings. The 
experiments in the ship’s swimming pool further emphasize 
that the system is robust across varying pool sizes and 

configurations, providing a practical tool for real‑time risk 
management. The results of this study are consistent with 
known epidemiological patterns of waterborne disease 

transmission reported in the literature [6], [13], highlighting 
the effectiveness of the proposed system. Specifically, as 
presented in Tables V and VI, the risk of norovirus 

transmission increases with the increase in the duration of 
passengers spent in the contaminated water (time exposure) 

and the occupancy of the area, whereas the transmission risk 
can be decreased as the chlorine levels and the median age 

are increased. 

V. DISCUSSION AND CONCLUSIONS 

This paper presented a fuzzy risk assessment system based on 
sensor data for short-term norovirus transmission on cruise 
ships. The proposed rule-based system considered several 
risk factors based on data provided by available smart 
sensors, such as RNA and RFID sensors, in alignment with a 
recently introduced smart ship design  [21]. To address the 
challenges of imprecise and incomplete data, the system 
incorporated information from domain experts and the 
literature, to predict the short-term transmission risk of 
norovirus onboard, using fuzzy rules. The experiments were 
conducted in two different pools with various characteristics 
and the results were validated using a case study of an 
epidemic outbreak reported in the literature. Furthermore, the 
results confirmed the importance of the identified risk factors 
for the transmission of waterborne diseases on board. 

Future work will focus on incorporating additional risk 
factors, and ultimately integrating the proposed sensor-driven 
system into a real operational cruise ship setting to support 
real-time monitoring and automated health safety 
interventions. Future extensions of the proposed fuzzy 
knowledge-based system may incorporate data-driven 
components, enabling hybrid modeling of complex 
transmission scenarios based on large-scale datasets. 
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