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Abstract— Cruise ships are a popular means of vacation for
millions of people every year. However, they present significant
challenges, especially in terms of addressing the risk of
outbreaks onboard. Among various pathogens, norovirusis the
most prevalent cause of gastrointestinal illness on cruise ships,
posing serious health risks to both passengers and crew.
Onboard recreational facilities such as swimming pools and pool
parties can create conditions where standard hygiene protocols
are not consistently enforced, increasing the risk of norovirus
transmission. Motivated by these challenges, this paper presents
a novel short-term risk assessment system for norovirus
transmission in swimming pools of cruise ships using data from
multiple sensors, and a fuzzy inference model. Traditional data-
driven models are typically limited by the unavailability of
training data in such environments. Instead, the proposed
approach adopts a knowledge-based design, utilizing domain
expertise and literature data, while incorporating sensor-driven
inputs, in alignment with a recently introduced smart ship
design. The system was validated using a real documented
outbreak and tested under various simulated scenarios of a
swimming pool derived from cruise ship schematics,
demonstrating its practical relevance and adaptability across
configurations.

Keywords—norovirus, waterborne disease, risk assessment,
fuzzy logic, knowledge-based system, sensor-driven system.

I. INTRODUCTION

Norovirus is a leading cause of gastroenteritis outbreaks
on cruise ships, where confined spaces and shared amenities
facilitate rapid transmission [1]. Despite the fact that
transmission of infectious agents through water is generally
rare under normal circumstances, norovirus outbreaks on
cruise ships are a significant public health concern [1], [2].
Moreover, norovirus is highly contagious, as even
asymptomatic individuals can shed large quantities of the
virus, with studies reportingthat a single gram of feces may
contain up to 100 billion viralparticles [3], while only a few
particles are sufficient to cause an infection [4]. Therefore,
asymptomatic cases can be detrimental to the spread of a
highly infectious virus such as norovirus, since they might
not get detected by ship personnel [5].

Cruise ships include a variety of recreational activities,
such aspoolparties, thatcan create situations where standard
safety protocols may not always be strictly followed [6].
Recreational water treated with chlorine levels above 1 mg/L
can eliminate more than 99% of norovirus particles within
seconds [7]. Nevertheless, outbreaks of norovirus have been
attributed to chlorine levels below the safety guidelines that
are designated by the Center for Diseases Control (CDC),
such as in [8]. In this incident, reduced chlorine levels can
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lead to a norovirus outbreak caused by an asymptomatic case.
Specifically, the chlorine concentration dropped to a critical
level (< 1 mg/L), placing it in a “gray zone” where
disinfection proved ineffective, allowing the virus to thrive
and spread [8]. Considering the above, it can be inferred that
a smart system capable of monitoring the presence of
waterborne infectious diseases in swimming pools could
provide valuable assistance in reducing the risk of disease
transmission onboard. Smart technologies, including smart
sensors, have been proven to be useful tools for monitoring
the transmission of infectious diseases [9]. These
technologies can be utilized to identify early symptoms of a
disease and automate the monitoring process, while
providing valuable information to ship crew and
manufacturers. This results in more informed and adaptive
policy-making when considering sa fety guidelines related to
waterborne diseases.

Data-driven approaches, such as machine learning model,
are commonlyused in health-related risk prediction tasks, yet
they require extensive training datasets. As such, their
application in assessing short-term disease transmission
scenarios on cruise ships is constrained by the limited
availability of outbreak data. In contrast, knowledge -based
approaches offer a viable alternative in data-scarce
environments. These methods leverage domain expertise,
e.g., from domain experts and/or literature-derived insights to
support decision-making and can be further enhanced
through the integration of sensor-driven data, providing a
more context-aware basis forrisk assessment. Fuzzy logic is
a powerfultool for handling uncertainty, incompletedata, and
imprecise medical information [10]. Only a limited number
of studies have been presented aiming to deal with
waterborne infectious diseases using fuzzy approaches.
Recent paradigms include, an adaptive neuro-fuzzy inference
system was proposed for predicting norovirus in drinking
water supply, based on water quality parameters such as
water pH, turbidity, conductivity, temperature and rain [11].
A multi-criteria decision-making model thatintegrates Fuzzy
Analytic Hierarchy Process (FAHP) with geospatial analysis
was presented aiming to identify zones vulnerable to
waterborne diseases [12]. However, the application of fuzzy
logic to short-term disease transmission on cruise ships
remains an open challenge.

To this end, consideringthe need for early prevention of

norovirus spread in crowded environments with water
facilities, such asin cruise ships, a novel system based on
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Fig. 1. Overview of the proposed system.

sensor data and knowledge-based fuzzy reasoning is
proposed.

The system aims to assess the short-term transmission
risk of norovirus in swimming pools, which can be very
crowded, especially during the summertime. The proposed
system utilizes data derived from different smartsensors, e.g.,
RNA sensors and chlorine sensors, to assess the risk of
waterbornediseases. These sensors are integrated into a novel
smart ship design proposed in the context of the HS4U'
project, which investigates methods for smartship design, to
provide enhanced passengers’ health safety. The proposed
fuzzy rule-based system considers several risk factors based
on dataprovided by available smart sensors and information
derived from the literature [9]. Compared to standard
epidemiological studies that focus on long-term disease
transmission and generic population dynamics [13],[14], this
study analyzes the short-term effects ofidentified risk factors
using a sensor-driven, fuzzy inference system, tailored to
context-specific and operationally relevant conditions. Tothe
best of ourknowledge, this is the first time that a fuzzy rule-
based system combined with smart sensors has been used to
assess the risk of waterborne disease transmission in
swimming pools. The main contributions of this study
include the following:

e A novel knowledge-based system assessing the shot-
term risk of waterborne diseases in swimming pools.

e Identification of risk factors that are early indicators of
waterborne infectious diseases and analysis of their
impact on short-term transmission.

e Experiments for validating the proposed system on a real-
case study and for different scenarios with various
swimming pool configurations.

The remainder of this paperis organized into three sections.
The proposed system is described in Section I1. Section 111
includes the experimental setup, and the experiments

TABLE 1. RiSK FACTORS AND THEIR IMPACT ON WATERBORNE DISEASE
TRANSMISSION.

I T —
Risk Factors mpact on ‘ransmlssmn
Risk
1. Chlorine Levels (mg/L) Lower | Higher 1
2.Median Age (years) Lower 1 Higher |
3. Occupancy (number of passengers) Lower | Higher 1
4. Time of Exposure (min) Lower | Higher 1

| Reducesrisk, 1 Increases risk

conducted in this research are presented in Section V. Finally,
conclusionsaswellas future research directions are discussed

in Section V.

II. METHODS

An overview of the proposed system is presented in Fig. 1.
As illustrated, sensors, such as RNA sensors and chlorne
sensors, are utilized to monitor areas of interest within the
ship, (monitored environments). The system is also linked
with the ships’ information system that can provide further
details of the passengers occupying each monitored
environment. The collected data are analyzed, and the
decision-making process is then performed, aiming to infer
the risk of waterborne disease transmission. The resulting
waterborne disease transmission risk is linguistically
characterized using defined fuzzy sets, as presented in this
section.

A. Risk Factor Analysis

Based on the available sensors included in the smart ship
design proposed in [9], and information retrieved from the
literature [15-18], the followingrisk factors were identified:
i) chlorine levels (CL), i) median age (MA), iii) time of
exposure (ET) of passengers to the virus, and iv) occupancy
(OCCQC), i.e., number of passengers in a specific area. These
factors constitute important indicators of norovius
transmission in water [18] and theirimpact is summarized in
Table I.

Chlorine is the most important countermeasure against
waterborne disease transmission in swimming poolks.
According to the literature, 99.2% of norovirus particles are
eliminated after 4.2 s of contact with treated water that
chlorine levels > 1 mg/L. However, concentrations below 1
mg/L have not been thoroughly investigated and, according
to [8], are considered ineffective in preventing the
transmission of highly infectious diseases like norovirus in
swimming pool environments. In the investigated outbreak
[8], chlorine levels were reported to vary between 0.5 and 1
mg/L, which were designated asa grayarea. In addition, the
CDC has also designated as safe, chlorine levels between 1
and 3 mg/L [17]. Chlorine concentrations above 3 mgL are
considered more effective at eliminating waterbome
pathogens; however, levels exceeding 5 mg/L are deemed
hazardous to human health [17].

Furthermore, the age of the passengers is correlated with
therisk of waterborne disease transmission. Based on the
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No CL MA occC ET Rr No CL MA occ ET Rr RISK LEVELS
34 MEDIUM Low Low MEDIUM LOW 1 Low LOW LOW Low MEDIUM ;C,);V[\,’,UM
35 MEDIUM Low Low MEDIUM Low 2 Low Low Low Low MEDIUM ™= HIGH
36 MEDIUM LOW MEDIUM LOW LOwW 3 LOW Low Low Low MEDIUM
37 MEDIUM Low MEDIUM LOW LOW a Low Low Low MEDIUM

38 MEDIUM Low MEDIUM LOwW Low 5 Low Low Low MEDIUM -
39 MEDIUM MEDIUM Low Low LOW 6 Low Low MEDIUM Low MEDIUM
40 MEDIUM | MEDIUM Low LOW LowW 7 Low LOW MEDIUM Low MEDIUM
a1 MEDIUM | MEDIUM Low LOW LOwW 8 Low LOW MEDIUM Low MEDIUM
a2 MEDIUM | MEDIUM Low Low Low ) Low MEDIUM Low Low MEDIUM
43 MEDIUM | MEDIUM LOW LOW LOW 10 Low MEDIUM Low Low MEDIUM
a4 MEDIUM | MEDIUM LOW LOW LOW 11 Low MEDIUM Low Low MEDIUM
45 MEDIUM MEDIUM LOW LOW LOW 12 LoOw MEDIUM MEDIUM MEDIUM

a6 MEDIUM | MEDIUM Low LOW Low 13 LOW MEDIUM | MEDIUM | MEDIUM

a7 MEDIUM | MEDIUM | MEDIUM | MEDIUM LowW 14 Low MEDIUM | MEDIUM | MEDIUM

a8 MEDIUM | MEDIUM | MEDIUM | MEDIUM Low 15 Low MEDIUM | MEDIUM

49 MEDIUM MEDIUM MEDIUM MEDIUM LOwW 16 LOwW MEDIUM MEDIUM

50 MEDIUM | MEDIUM | MEDIUM | MEDIUM LOW 17 Low MEDIUM | MEDIUM

51 MEDIUM | MEDIUM | MEDIUM | MEDIUM Low 18 Low MEDIUM MEDIUM

52 MEDIUM | MEDIUM | MEDIUM | MEDIUM Low 19 Low MEDIUM MEDIUM

53 MEDIUM | MEDIUM | MEDIUM Low 20 Low MEDIUM MEDIUM

54 MEDIUM | MEDIUM | MEDIUM LOwW 21 Low MEDIUM MEDIUM

55 MEDIUM MEDIUM MEDIUM LOW 22 LOW MEDIUM

56 MEDIUM | MEDIUM MEDIUM LOW 23 LOW MEDIUM

57 MEDIUM | MEDIUM MEDIUM Low 24 Low MEDIUM

58 MEDIUM MEDIUM MEDIUM LOW 25 Low MEDIUM

59 MEDIUM | MEDIUM MEDIUM 26 LOW MEDIUM

60 MEDIUM | MEDIUM MEDIUM 27 Low MEDIUM | MEDIUM | MEDIUM
61 MEDIUM | MEDIUM MEDIUM 28 Low MEDIUM | MEDIUM | MEDIUM
62 MEDIUM LOW LOW 29 LOW MEDIUM MEDIUM MEDIUM
63 MEDIUM LOW Low 30 MEDIUM Low Low Low
64 MEDIUM MEDIUM | MEDIUM Low 31 MEDIUM Low Low Low
65 MEDIUM MEDIUM | MEDIUM Low 32 MEDIUM Low Low Low
66 MEDIUM MEDIUM | MEDIUM Low 33 MEDIUM Low Low Low

Fig. 2. Fuzzy rules for estimation of waterborme disease transmission on cruise ships.

outbreak analyzed in [8], the risk of infection was notably
higher among individuals under the age of 16.

Moreover, several studies have also highlighted that
children are more susceptible to water-mediated infections,
since they consume more water while swimming, compared
to adults [16], [18]. Furthermore, the exposure time of
individuals in waters that are contaminated with pathogens is
associated with higherrisk ofinfection [15]. Therefore, n the
cases of norovirus transmission, the longer the exposure of
the individuals the higher the transmission risk of the virus.
Furthermore, the occupancy, i.e., the total number of
passengers, is also a risk factor when investigating water-
mediated transmission of infectious disease. In detail, the
World Health Organization (WHO) has designated specific
guidelines to ensure safety and suggests a maximum capacity
of bathers for swimming pools. The WHO dictates the
maximum capacity of a pool can be calculated based on the
surface area and depth of the pool as follows [7]:

= )

where B is the maximum capacity of the pool, L is the length
of'the pool, Wisthe width of the pool. The batherload b, can
be defined as follows:

2.2m?, for depth< 1.0 m
2.7m?,for 1.0<depth< 1.5m (2)
4.0m?, for depth>1.5m

The risk regarding the waterborne transmission for the
validation scenarios is calculated as follows:

bl=

P

Rer =17 A3)
where P are the number of infected passengers,and T is the
total number of passengers in a pool.

B. Decision-Making Process

The processed data are assessed usinga decision-making
module, which evaluates the waterborne disease transmission
risk in the monitored environmentbased on theidentified risk
factors. Eachmonitored environment is then assigned with a
risk level, such as “Low” (L), “Medium” (M), and “High”
(H). In this paper, a decision-making system based on fuzzy
logic is proposed, aiming to perform the risk assessment of
norovirus in swimming pools of cruise ships. The proposed
system is developed based on Mamdani fuzzy inference,
which is used as a baseline yet effective methodology [19],
[20]. Unlike other methods, the Mamdani’s method does not
require extensive data and provides explanatory results that
can be easily understood.



To define the transmission risk based on the Mamdani’s
method, the following process is performed; the input
variables are initially fuzzified using membership functions
designed considering domain knowledge, as described in the
following section. This fuzzification process transforms crisp
input values into degrees of membership, enabling the system
to handle data uncertainty and imprecision. Therelationships
between the identified risk factors and the output risk are
inferred, using ‘IF-THEN’ rules. In this study, the fuzzy ke
base was constructed by systematically combining the
selected input factors. In the current study, the fuzzy rules
were generated through a combination of the considered
factors as wellas expert knowledge and information derived
from the literature [19]. Finally, a total number of 66 rules
have been elicited and empirically selected by domain experts

(Fig. 2).

The activation ofthese fuzzy rules depends on the specific
input values and the logical operators. Each rule contributes
to the generation of output membership functions, denoted as
(M] ), which are aggregated and defuzzified, resulting in a
crisp final output, using the following equation:

n
M = \/(40) ABG) A C(@) ADW), 4)
i=1
where “V” and “A” correspond to the fuzzy union and
intersection operations. Furthermore, j =1, .., M, where M
is the total number of activated fuzzy rules; the variables
x,z,d,k are the input risk factors, i.e., chlorine levels,
medianage, time of exposure of passengers to the virus, and
occupancy, respectively. Each variable is defined by a
corresponding fuzzy set 4;, B;,C;, D;, respectively, withi =
1, ..., n.

An indicative example of a fuzzy rule is the following
“IF Chlorine Level is Low AND Median Age is Low AND
Occupancy is Low AND Time of Exposure is Low THEN
Risk is Medium.”

III. EXPERIMENTAL SETUP

To assess the risk of waterborne disease transmission,
scenarios with sensors placed in pool areas (subsection I11-A)
were considered. The effectiveness of the defined fuzzy rules
was validated using a norovirus outbreak scenario reported in
the literature (subsection I1I-B). Furthermore, fuzzy sets were
defined for the linguistic characterization of the infemed
transmission risks (subsection I11-C) were defined.

A. Sensors

The deployment and impact of the sensors was simulated
to evaluate the effectiveness of the proposed system, in
different experimental scenarios. The simulation of sensor
deployment was guided by cruise ship schematics to ensurea
representative spatial configuration of pool areas. This
approachreflects typical onboard conditions relevant to health
risk assessment, while maintaining flexibility in how sensor
integration could be realized in practice, and aligns with the
broader smart ship design principles explored in the HS4U
project [21]. Furthemmore, the following three sensors were
considered:a)anRNA sensor was deployed in the examined
pool to detect the presence of pathogens, providing
information regarding potential contamination events; b) a
chlorine sensor was used to monitor the concentration levels

of chlorine in the water; c) a Radio-Frequency Identification
(RFID) sensor was implemented to collect information of
passengers, including the number of people in a monitored
environment, their time duration of exposure, and therr
median age. The combined use of these sensors allowed fora
more comprehensive and effective analysis of the identified
risk factors influencing short-term waterborme disease
transmission.

B. Swimming Pool Scenarios

The generated fuzzy rule set was validated based on the
norovirus outbreak reported in a swimming pool area
described in [8]. The dimensions ofthe pool of this validation
scenario were 25 m length, 12.5 m width and 1.2 m depth.
Subsequently, the surface area of the poolwas 312.5m?and
b, for a pool with 1.2 m depth is 2.7 m?, thus using these
parameters in (1), (2) the maximum capacity of the pool, in
terms of number of passengers, is equalto 115.

The effectiveness of the proposed system was alo
evaluated in various testscenarios, using the samerisk factors
and a set of different pool characteristics, compared to the
validation scenarios. Specifically, the size ofthe current pool
was 16.5 m length, 8.5 m width and 1.6 m — 1.8 m depth.
Given that the surface area of the pool is 140.25 m? and the
b, for a pool with an average depth of 1.7 m is 4.0 m?, the
maximum capacity, based on (1) and (2), is calculated to be
35 passengers. The resulting fuzzy sets for the pools used in
the experiments are presented in the following subsection.

C. Fuzzy Set Construction

Based on the analysis conducted in subsection I1.A, four
risk factors were identified according to the available sensors
and information provided by the considered smart ship
design. Each risk factor is represented by fuzzy sets that
correspond to linguistic values, such as “Low”, “Medum?”,
and “High”. A higher degree of membership towards a
specific fuzzy set signifies an increased or decreased risk of
the waterborne disease transmission, based onthe risk factor
analysis (II-A). To linguistically characterize the
transmission risk, the fuzzy sets presented in Tables II and
11, were defined.

TABLE II. Fuzzy SETS OF THE RISK FACTORS FOR THE POOL OF THE
VALIDATION SCENARIOS.

g;‘t"y CL MA occ ET Risk
Low [0, 1] [1,33] 2,59] [15,45] | [0,03]
Med. | [05,157 | [17,49] (30,87] [30,60] | [0.1,0.5]
High [1,3] [33,65] [59,115] | 45,1201 | [03, 1]

TABLE IIl. DEFINED Fuzzy SETS OF THE RISK FACTORS FOR THE POOL OF
THE TESTING SCENARIOS.

Chlorine

Fuzzy Level Median Occupancy Exp.osure R
Set (mg/L) Age Time

Low [0,1] [1,33] [2,12] [15,45] [0,0.3]
Med. [0.5,1.5] [17,49] [6,23] [30,60] [0.1,0.5]
High [1,3] [33,65] [12,35] [45,120] [0.3,1]




IV. EXPERIMENTS AND RESULTS

A. Validation Scenarios

To evaluate the effectiveness of the defined fuzzy rules,
different scenarios comprising various values of the
identified risk factors were examined for the two types of
swimming pools. Experiments were conducted for all
combinations of the four risk factors, each characterized by
three possible linguistic values, resulting in a total of 81
differentscenarios. A representative subset of these scenarios
is presented in Tables V-VI. The parentheses contain the
respective linguistic values, indicating the membership of a
risk factorto a respective fuzzy set (L)ow, (M)edium, or
(H)igh (Tables II-11I).

Using the outbreak datareported in [8] as a reference, the
defined fuzzy rules were applied to validation scenarios; only
the participants who attended the Halloween party were
considered, as the scope of the present study is to assess the
short-term risk of waterborne disease transmission.
Subsequently, it was reported that 58 participants attended
the Halloween party, which lasted 120 minutes. Out of the 58
participants, 46 were reported to be infected, resulting in a
disease transmission risk of 0.79, using (3), linguistically
characterized as “High” (Table II). The median age of
participants was equalto 25, and during that time the chlorne
levels were reported to be 0.29 mg/L. Furthemore,
participants spent 60 to 120 minutes inside the pool, thusa
mediantimeof 90 minutes of exposure time was considered.
Based on Table IV, it canbe observed that for a chlorine level
of 0.29 mg/L, a median age of 25, occupancy of 58
participants, and 90 minutes of exposure, the system infemred
a risk equal to Rr =0.78 (“High”), which was in close

agreementwith the ground truth, i.e., Rgr =0.79 (“High”).

Additional experiments were conducted to observe the
response of the system for other scenarios of detection of
norovirus in the same swimming pool(Table V). Regarding
the chlorine level as a risk factor, its correct regulaton
significantly reduces the risk of disease transmission [8], as
also confirmed by the experiments conducted in this study.
Specifically, adequate chlorine levels of 3 mg/L result to a
“Low” risk of transmission, evenin scenarios ofa “Medium”
pool occupancy with passengers of a “Low” median age
(scenario no. 2), factors thathave been shown to be associated
with a “High” risk of transmission (Table I). In addition, a
“Low” medianage increases the transmissionrisk especially
when combined with “High” occupancy and exposure tine
(scenarios no. 1 and 4). Furthermore, “High” exposure time
result to “High” transmission risk (scenario no. 5), especially
when combined with “High” occupancy (scenarios no. 1 and
4).

B. Experiments on Swimming Pools of Cruise Ships

Multiple experiments were also conducted ona ship pool
of a cruise ship, described in I1I-B, using various risk factor
combinations, and are presented in Table VI. The
experiments revealed that “Low” chlorine levels consistently
resulted in “Medium” and “High” risk values of disease
transmission, even when the median age was “Low” or
“Medium” (no 1, 4). For “Medium” chlorine levels, the
system inferred “Low” risk value of waterborne disease
transmission (no. 2, 3).

TABLE IV. VALIDATION RESULTS BASED ON THE CASE STUDY [8].

No CL MA OCC ET Rr Rgr

0.29 25 58 90 0.78 0.79
@) L) M) (H) (H) (H)

TABLE V. RISK ASSESSMENT OF NOROVIRUS DISEASE TRANSMISSION ON
CRUISE SHIPS USING THE DEFINED FUZZY RULES (VALIDATION SCENARIOS).

No CL MA occ ET Ry
1 0.50 20 100 80 0.76
© ©) (H) (H) (H)

) 3 5 55 20 0.15
M) ©) ™M) © ©)

N 3 55 55 20 0.15
™M) (H) ™) © ©

4 0.70 40 102 110 0.71
© M) (H) (H) (H)

5 0.80 30 34 110 0.53
M) M) © (H) (H)

6 0.70 40 102 40 0.62
© ™M) (H) ™) (H)

7 0.80 30 34 45 0.19
M) M) ©) ™M) ©)

q 0.70 40 102 20 0.59
D) ™M) H ® H

9 0.80 30 34 20 0.14
™) ™M) © © ©

10 0.50 20 100 20 0.59
© © (H) © (H)

TABLE VI. RISK ASSESSMENT OF NOROVIRUS DISEASE TRANSMISSION IN
A SHIP’S SUIMMING POOL USING THE DEFINED Fuzzy RULES (TESTING
SCENARIOS).

No CL MA occ ET Re
| 0.50 20 21 80 0.76
© © ) (H) (H)

) 3 5 21 20 0.15
™M) ©) ™) © ©

3 3 65 10 20 0.15
(M) H © O D)

4 0.70 40 9 110 0.57
© ™M) © (H) (H)

5 0.80 30 31 110 0.59
© ™M) H H) H)

6 0.90 10 15 45 0.26
™) © ™) ™) ™)

; 0.92 30 15 45 0.15
M) M) ) M) ©)

g 0.50 20 21 20 0.53
© © ™) ® H

9 1 5 21 40 0.21
™) © ™M) ™M) ™)

10 1 65 21 40 0.19
™) (H) ™M) ™M) ©

Forscenarios with improperly regulated chlorinelevels, such
as "Low" and “High” chlorine levels (scenarios no. 1, 4),
norovirus transmission is "High". Furthermore, “High”
exposure time result to “High” waterborne transmission risk
(no.4,5),

By comparingtheresults between the validation pooland
the ship pool, we can see that the proposed fuzzy rule-based




approach adapts well to different physical settings. The
experiments in the ship’s swimming pool further emphasize
that the system is robust across varying pool sizes and
configurations, providing a practical tool for real-time risk
management. The results of this study are consistent with
known epidemiological patterns of waterborne disease
transmission reported in the literature [6], [13], highlighting
the effectiveness of the proposed system. Specifically, as
presented in Tables V and VI, the risk of norovius
transmission increases with the increase in the duration of
passengers spent in the contaminated water (time exposure)
and the occupancy ofthe area, whereas the transmission risk
can be decreased as the chlorine levels and the median age
are increased.

V. DISCUSSION AND CONCLUSIONS

This paper presented a fuzzy risk assessment system basedon
sensor data for short-term norovirus transmission on cruise
ships. The proposed rule-based system considered several
risk factors based on data provided by available smart
sensors, such as RNA and RFID sensors, in alignment with a
recently introduced smart ship design [21]. To address the
challenges of imprecise and incomplete data, the system
incorporated information from domain experts and the
literature, to predict the short-term transmission risk of
norovirus onboard, using fuzzy rules. The experiments were
conducted in two differentpools with various characteristics
and the results were validated using a case study of an
epidemic outbreak reported in the literature. Furthermore, the
results confirmed the importance of theidentified risk factors
for the transmission of waterborne diseases on board.

Future work will focus on incorporating additional risk
factors, and ultimately integrating the proposed sensor-driven
system into a real operational cruise ship setting to support
real-time monitoring and automated health safety
interventions. Future extensions of the proposed fuzzy
knowledge-based system may incorporate data-driven
components, enabling hybrid modeling of complex
transmission scenarios based on large-scale datasets.
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