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PUBLISHABLE SUMMARY 

Cruise ships are unique closed environments that blend private and public areas, where diverse 
populations come together and travel for extended periods. These conditions create an ideal setting 
for the spread of infectious diseases, both airborne and waterborne, due to the close proximity of 
passengers and the shared facilities on board. To address these challenges, this task developed 
risk assessment mathematical models and software components for assessing health hazards on 
ships and achieve the functionality of the Collaborative Digital Framework (CDF) proposed in the 
scope of the HS4U project.  

This task included analyses and modelling of accessible areas such as public spaces, and cabins 
using data from HS4U use cases and existing information. Data from pilot partners, including ship 
schematics, air filtration, ventilation systems, and sewage systems, was retrieved, and rooms and 
equipment were categorized based on their impact on various diseases. A mapping between ship 
components and disease spread was defined.  

Based on these, a biomedical model was developed to simulate infection transmission in passenger 
ships, both indoors and outdoors, estimating and predicting infection risks for short time spans at a 
micro-scale. The model integrated various types of equipment—including thermal cameras, audio 
sensors, and pathogen detection systems—to monitor early indicators of infectious diseases and 
assess real-time risk through a fuzzy inference system. Computational tools were used to model and 
predict the spread of microbes through air and water, accounting for real-world measurements of air-
flow characteristics and piping system parameters. These methods simulated infection spread at a 
micro-scale, capturing the impact of human interactions and environmental factors on disease 
transmission, while enhancing the risk assessment process of the developed biomedical model.  

The biomedical model was evaluated through experiments in multiple scenarios of air-, water- and 
surface-mediated disease transmission for different infrastructural components of cruise ships. The 
results of these experiments demonstrated that the proposed biomedical risk assessment model 
effectively and accurately estimates disease transmission risks, while also providing actionable risk 
mitigation recommendations to the crew. An additional merit of the model is its modular design that 
allows for adaptability to different ship configurations and sensor setups. Consequently, the 
technologies developed in this task can be effectively integrated into the CDF framework in accord 
with the aim of the HS4U project, while its adaptability ensures that it can be utilized in future maritime 
health initiatives. 
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FOREWORD 

In the context of the research conducted for the implementation of Task 3.2, a biomedical risk 
assessment framework for assessing health hazards on ships was developed. This task included (a) 
analyses and modelling of accessible areas such as public areas, cabins, and self-checking docks 
using evidence-based data from HS4U use cases and existing information, (b) biomedical modelling 
in passenger ships to facilitate simulation-based analyses of infection transmission (for indoor and 
outdoor areas), and (c) computational modelling, simulation, analysis, and assessment of airborne 
and waterborne bacterial and virus spreads through surfaces for their design implications in 
evidence-based naval architecture and marine engineering plans. The results of this research have 
been published in several peer-reviewed scientific journals and conferences, where more details on 
the literature, models, and methods investigated can be found. 

Publications 

1. Ritos, K., Drikakis, D., & Kokkinakis, I. W. (2023). Virus spreading in cruiser cabin. Physics 
Fluids, 35(10), 10. 

2. Christakis, N., & Drikakis, D. (2023a). Reducing uncertainty and increasing confidence in 
unsupervised learning. Mathematics, 11(14), 14. 

3. Christakis, N., & Drikakis, D. (2023b). Unsupervised learning of particles dispersion. 
Mathematics, 11(17), 17. 

4. Christakis, N., Drikakis, D., Ritos, K., & Kokkinakis, I. W. (2024). Unsupervised machine 
learning of virus dispersion indoors. Physics Fluids, 36(1), 1. 

5. Ritos, K., Drikakis, D., & Kokkinakis, I. W. (2024). The effects of ventilation conditions on 
mitigating airborne virus transmission. Physics Fluids, 36(1), 1. 
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 INTRODUCTION 

Cruise ships are closed environments that combine private and public areas, where diverse 
populations travel together for several days. Such conditions are considered ideal for the 
spread of both airborne and waterborne diseases. A recent example is the Diamond 
Princess cruise ship, where after a passenger was tested positive for COVID-19 (SARS-
CoV-2), the passengers and the crew were instructed to quarantine for two weeks. During 
that period, there was an extensive spread of the virus throughout the ship, counting 651 
cases over 3,711 passengers and crew (Batista et al., 2020). After almost one month, all 
passengers and crew disembarked. Notably, 712 (19.2%) were tested positive for COVID-
19, and among them, 331 (46.5%) were found asymptomatic (Moriarty et al., 2020).  

In general, disease outbreaks are relatively common in closed environments, such 
as cruise ships, nursing homes, hospitals, and college dormitories (Mouchtouri et al., 2020). 
In the case of cruise ships, outbreaks are associated with either airborne diseases, e.g., 
COVID-19 or waterborne diseases, e.g., gastrointestinal (GI) diseases. These are usually 
attributed to organisms, such as Salmonella, Shigella, enterotoxigenic Escherichia coli, 
influenza virus, and Legionella pneumophila, and, more recently, norovirus and COVID-19 
(Hill, 2019; McCarter, 2009). During such outbreaks, cruises often go into quarantine until 
the source is isolated and the spread is mitigated. Therefore, modeling and predicting the 
progress of disease outbreak in closed environments is of paramount importance for their 
mitigation. The success of a modeling approach depends highly on the parameters taken 
into consideration, such as social and behavioral factors, as well as parameters related to 
the transmission pathways. For the latter, accurate data regarding the transmission through 
the air, water, and surfaces are key to the effectiveness and fidelity of a simulation. 

Diseases can spread via different transmission modes, including airborne, droplet, 
contact, and fecal-oral transmissions (Delikhoon et al., 2021). The most common disease 
transmission pathway among individuals is air. An infectious disease, such as COVID-19 
can be spread when contact is established between an infected host and a susceptible one. 
Peer-to-peer contact modes involve complex interactions of a pathogen with a fluid phase, 
e.g., isolated complex fluid droplets or a multiphase cloud of droplets. When an individual 
exhales, including coughing or sneezing, micron-sized droplets are formed, which can 
transfer airborne pathogens, such as such as viruses (∼10–100 nm), bacteria (∼1 µm), and 
spores (∼1–10 µm) (Bourouiba, 2021). Fine and ultrafine particles (airborne transmission) 
can stay suspended for an extended period of time (≥2 h) and be transported through simple 
diffusion and convection mechanisms as far as 8 m (Delikhoon et al., 2021). These can be 
either transmitted directly to other people or be deposited on surfaces and transmitted 
indirectly through contact.  

Another but less frequent transmission pathway is water. A direct source of infection 
is infected potable water, while premise plumbing with non-potable water, e.g., showers, 
toilets, and sink faucets, and the water systems associated with it, are common indirect 
sources of infection transmission (Carlson et al., 2020). Nevertheless, nowadays extensive 
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measures are taken to minimize or even eliminate the occurrence of such cases (Leslie et 
al., 2021; Muli et al., 2020). Air bubbles are ubiquitous on water surfaces and are common 
in facilities of cruise ships, such as pools and toilets. Bubbles can also cause public health 
concerns, since droplets generated from contaminated water may carry infectious payloads 
that can lead to airborne disease transmission. Contaminated droplets can be easily 
transported over short and long distances by drafts, such as those generated by the heating 
ventilation and air-conditioning (HVAC) system. Inhalation of droplets or droplet nuclei 
containing bacteria is a recognized route of infectious disease transmission, e.g., outbreaks 
of Legionella (Prussin II et al., 2017), which are attributed to aerosolization from bursting 
bubbles. Another source for the waterborne transmission of diseases is the development of 
biofilm in the piping systems, especially those with warm water (<50°C). Biofilms develop 
on most surfaces in contact with non-sterile water. Pathogens in biofilms do not usually 
spread from person-to-person or through direct consumption of the water, but there is 
considerable evidence that individuals become ill when exposed to airborne water droplets 
that have been seeded by those pathogens. Activities that can lead to their aspiration include 
showering and hand washing.  

Although viruses, such as SARS-CoV-2, are principally transmitted through person-
to-person contact through droplets produced while talking, coughing, or sneezing, 
transmission may also occur through other routes, such as contaminated surfaces. 
However, the role that surfaces play on the spread of the disease remains contested. For 
example, infective coronavirus has been found to persist on surfaces from 3 h to 28 days, 
depending on different environmental factors, e.g., surface material, humidity, and 
temperature. Viruses can be transferred from contaminated surfaces to the hand upon 
contact and from the hand to the mucous membranes on the face. Nevertheless, 
experimental findings reported in the literature support the current perception that 
contaminated surfaces are not a primary mode of transmission, at least as regards SARS-
CoV-2 (T. Chen, 2021; Pitol & Julian, 2021). 

Monitoring and controlling the spread of a disease in a cruise ship is a complex 
problem, requiring information about the ship (e.g., accessible areas, ventilation, and water 
supply network), the passengers (e.g., demographic and health data), and possible 
diseases, including their symptoms and treatments, the respective pathogens and 
epidemiology. To this end, several guidelines and protocols have been developed ((WHO) 
& others, n.d.; Organization & others, n.d.); however, their application is mainly based on 
decisions and interventions performed by the vessel’s crew. Therefore, managing a crisis, 
such as an epidemic, on board is currently prone to human errors, which can be life-
threatening in the case of severe infectious diseases. The frequency of such errors depends 
on several parameters, including the number of the crew members, their training and 
experience, the size of the vessel, and the number of passengers on board. Furthermore, 
the interaction of crew members with diseased passengers can contribute to further 
spreading of the disease and affect its operational capacity. 

It is therefore evident that an automatic system for disease spread monitoring and 
control in cruise ships would contribute to limiting the dependencies on the human factor, 
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and consequently to passengers’ safety. Towards this direction, this chapter presents a 
conceptual model integrating technologies that could be used for disease monitoring and 
spread control. This model integrates sensors, actuators, artificial intelligence, 
mathematical, numerical and/or other simulation models to predict the risk of disease spread 
in cruise ships, and to support decision making regarding possible mitigation measures. 

The remainder of this chapter is organized as follows: Section 2 presents ship related 
data including provided ship schematics, empirical risk levels gathered for each 
compartment and a summary of disease monitoring approaches and equipment focusing on 
ships and enclosed spaces, Section 3 introduces the biomedical risk assessment (RA) 
model developed, including an extensive review of related methodologies for epidemic-
related RA and simulation of disease spread, as well as an overview of the simulated 
scenarios examined in this deliverable; Section 4 presents the computational modeling, 
simulation, analysis, and assessment conducted; Section 5 presents the experiments and 
results; Section 6 discusses key outcomes and conclusions derived. 

 

 SHIP RELATED DATA 

 Ship Schematics 

In the context of the HS4U project, ship schematics of two representative cruise 
ships, i.e., World Dream and Celestyal Discovery, were provided by the partners. These 
schematics were utilized to identify different areas of the ship and probable disease 
transmission scenarios that were used to create the biomedical RA model. These 
schematics include detailed information about the ship areas for each deck, including 
passenger cabins, eating areas, recreational spaces such as bars and casinos, swimming 
pool areas and public toilets. Information regarding the structure (surface area and height) 
and the capacity of these areas were used to adjust the biomedical RA model for each 
scenario and area. The schematics for several decks of the ship can be observed in Figures 
1 & 2. Additional information that is available in these ship schematics is the furniture 
arrangement of the depicted spaces, such as the position of furniture in each area. These 
data were further utilized for simulation purposes, i.e., modeling of areas, and to assist in 
the decision-making process of the biomedical RA model. 
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Figure 1. Ship schematics for Deck 13,15,16,17 of the World Dream cruise ship. 

 

 

 

Figure 2: Ship schematics for Deck 7-9 of the World Dream cruise ship. 

The public areas of the World Dream cruise ship are denoted in blue and the cabins green. As 
observed in Figures 1 & 2, the schematics provide more details regarding the space configuration of 
the public areas, which enable the computational modelling of these rooms for simulation purposes. 
Additionally, detailed schematics for several decks of the Celestyal Discovery can be observed in 
Figures 3-6. In these schematics, cabins are denoted with green, orange, cyan and purple depending 
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on the type of the cabin (Figures 5 & 6). Public areas are denoted with blue, orange or black (Figure 
6). The overview of this cruise ship can be observed in Figure 3. This cruise ship comprises 11 
Decks.  

 

Figure 3 Overview of the Celestyal Discovery cruise ship. 

 

Figure 4 Detailed schematics of Decks 1-3 of Celestyal Discovery cruise ship. 
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Figure 5 Detailed schematics of Decks 4-7 of Celestyal Discovery cruise ship. 

 

Figure 6 Detailed schematics of Decks 8-11 of Celestyal Discovery cruise ship. 

 
Overall, the schematics were utilized to develop and evaluate the proposed risk assessment 
methods that will be presented in the following Sections. 
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 Sensors 

A well-defined disease prevention system can provide timely detection, intervention, and control in 
the context of infectious disease outbreaks. Notably, there is a limited number of dedicated studies 
on disease monitoring in ships (Fong et al., 2022; Maeda et al., 2021; Mihai & Rusu, 2021; Nolich et 
al., 2019), compared to that in broader domains such as hospitals and public spaces. The limited 
research focus, particularly in the context of ships, can be attributed to restricted data access and 
practical constraints among other factors. More specifically, disease monitoring in crowded indoor 
spaces can be realized through various methods, including the utilization of surveillance systems 
(Sága Jr et al., 2022), medical screening (Baig et al., 2017), ventilation control (Hoffman et al., 2022), 
and contact tracing (Brewster et al., 2022). The likelihood of respiratory transmission is particularly 
higher in indoor settings, since it encourages prolonged close contact (Morawska et al., 2020). 
Therefore, to effectively identify and prevent the transmission of infectious diseases in indoor 
environments, it is preferable to combine different preventive measures, considering the 
circumstances of the task. For instance, (Vardoulakis et al., 2022) assessed multiple factors for 
minimizing the risk of bacterial and viral contamination through respiratory inhalation and surface 
contact in public washrooms. Similarly, enclosed spaces in ships promote frequent contact among 
individuals onboard, which poses a challenge to disease monitoring and risk management in the 
event of an outbreak (Brewster et al., 2020). In particular, the recent COVID-19 outbreaks has 
created the need for mechanisms that promptly identify, isolate, and treat the affected individuals, 
considering that the main routes of transmission include respiratory droplet inhalation, as well as 
direct and indirect contact with the virus (W. Zhang et al., 2022).  

Several methods incorporate smart technologies to develop effective outbreak response 
plans with the aim of mitigating such infectious disease epidemics on ships (Aouad et al., 2021), 
either through Internet of Things (IoT) sensors, drones, thermal cameras, or mobile applications. 
Ultimately, sensors provide real-time data on environmental conditions, human behavior, and other 
elements that can affect the spread of infectious diseases. There are various types of smart devices 
and IoT sensors that could be used in ships for disease monitoring (Aouad et al., 2021; Meraj et al., 
2021). These include wearable sensors, air quality sensors, and thermals cameras. Wearable 
sensors can be utilized by passengers and crew members to track their movement and monitor 
epidemic indicators such as body temperature, heart rate, and respiration rate. Hence, wearable 
sensors can enable extensive contact tracing and early symptom identification that allow for rapid 
isolation and treatment of infected individuals (Guk et al., 2019). However, they may raise data 
confidentiality and security concerns as they require personal participation and compliance from 
individuals. In addition, air quality sensors can detect the presence of airborne particles, including 
viruses and their utilization provides measurements of air temperature, humidity, and ventilation 
rates, which impact the spread of infectious diseases (Fong et al., 2022). Therefore, the incorporation 
of air quality sensors enhances the effectiveness of ventilation systems and locates areas with poor 
air circulation. Nevertheless, most of them lack the capacity to differentiate between various types 
of airborne contaminants (H. Zhang et al., 2021). Furthermore, thermal cameras can be used to 
identify elevated body temperatures that could indicate the presence of fever, a symptom of several 
infectious diseases (Vairavan, 2022). Moreover, thermal cameras are considered non-invasive and 
can effectively scan crowded places, such as boarding areas. However, they are ineffective at 
detecting asymptomatic carriers, who may not have fever. There are also approaches that employ 
other types of sensors to measure environmental parameters, such as infrared-based sensors. For 
example the approach described in (Salman et al., 2019) investigated the deployment of wireless 
sensor units to assess indoor air quality. This was accomplished by employing infrared sensors to 
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measure humidity, CO2, and temperature, as well as low-power wireless networking and geo-
statistic methods for the prediction of holistic indoor maps. Another study designed IoT-based smart 
glasses to identify suspicious cases of COVID-19 among individuals (Mohammed et al., 2020). 
Testing individuals using laboratory tests might be not available or can delay the detection of 
infectious diseases; thus, the use of other screening methods, such as biosensors could provide a 
reliable alternative (Jain, Nehra, et al., 2021). Signal processing and analysis of cough sounds with 
the use of an AI framework was introduced as an alternate diagnostic method for COVID-19 (Pal & 
Sankarasubbu, 2021), and more recently, a method that utilized cough, speech, and breath sound 
processing for diagnosing COVID-19 was proposed (Aly et al., 2022). This innovative way of 
diagnosing respiratory diseases could be helpful in an epidemic outbreak aboard a ship; thus, such 
algorithms could be employed for onboard testing, alleviating the need for dedicated medical 
equipment and even aid with passive surveillance of the ship, i.e., detecting disease-classified 
sounds in the common areas.  

Another alternative direction concerns methodologies that employ IoT-based solutions to 
acquire data from different sensors and realize disease monitoring. These approaches investigate 
the implementation of IoT-based indoor air quality (IAQ) monitoring systems, that collect real-time 
data for effective control of the environmental parameters (Kanál & Tamás, 2020; H. Zhang et al., 
2021). More specifically, most methodologies in this context utilize sensors and IoT devices that 
usually harness cloud computing ser-vices to optimize ventilation systems with low energy 
consumption. Recently, various studies have explored an alternative direction that combines ML 
techniques and sensor-based systems to detect abnormal patterns in air quality data, whereas 
provide insights regarding the reason behind the observed irregularities (Ameer et al., 2019; 
Roskams & Haynes, 2019). ML models have also been utilized to perform disease monitoring, 
diagnosis, and prediction based on collected health data using sensors, e.g., body temperature and 
heart rate, while using cloud-based services for real-time data transfer (Awotunde et al., 2021; Yan 
et al., 2017). In this context, there are various types of Internet-based epidemic intelligence systems 
that opt for different functionalities, such as social distancing detection, disease identification, and 
contact tracing (Hossain et al., 2020). Notably, the previously mentioned methodologies showcase 
the importance of implementing effective disease monitoring strategies that could be incorporated in 
indoor settings, particularly in the context of infectious disease outbreaks in ships. 

However, the utilization of sensors in disease monitoring systems introduces several 
limitations including maintenance, cost, and data security concerns (Awotunde et al., 2021). In 
particular, the collection and sharing of personal health information from cameras, wearables, and 
other sensors for disease monitoring may be subject to regulations related to privacy concerns. For 
instance, the General Data Protection Regulation (GDPR) establishes rules for the collection of 
personal data and states that individuals must be appropriately informed regarding their use (Voigt 
& Bussche, 2017). Therefore, to address these concerns it is essential to implement clear policies 
and privacy-preserving protocols that ensure the confidentiality of the collected data, as well as to 
obtain informed consent from individuals prior to sharing their information.  

Current studies indicate that processing and analysis of the signals acquired from different 
sensors can provide useful cues regarding the spread of infectious diseases in closed environments 
(Jiang et al., 2022; Meraj et al., 2021). Based on the semantics derived from such an analysis, 
decisions for RA and management can be made by decision support systems designed for this 
purpose.  
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To this end, several possible sensors are utilized in the context of the HS4U project aimed at 
assisting the biomedical RA model. These sensors are part of the smart ship design that is proposed 
and were identified based on the available information they provide to the RA model (Table 1). Audio 
sensors can provide crucial information regarding symptomatic passengers, e.g., microphones can 
be used to detect coughing in the public spaces of the ship. Sensors for detecting pathogens in the 
air or water, hereinafter air DNA/RNA sensor and water DNA/RNA sensor, could be incorporated in 
the HVAC and blackwater system (D3.1). The air DNA/RNA sensors could be placed in public 
spaces of the ship to detect any airborne pathogen, e.g., COVID-19. Similarly, the water DNA/RNA 
sensors could be placed in key areas of the blackwater system, e.g., cluster of passengers’ rooms 
or public toilets, and can detect pathogens in the wastewater of the ship, e.g., norovirus. The water 
DNA/RNA sensor could also be placed in swimming pools of the ship and could be combined with 
the chlorine sensors that measure the chlorine levels in the pools. These two sensors can be 
beneficial to monitor the risk of a disease outbreak in case of low chlorine levels combined with the 
presence of a highly infectious disease in the water, such as norovirus. Monitoring public spaces in 
case of elevated body temperature of passengers can also be useful to assess the risk of disease 
transmission. Thermal camera sensors that are part of the smart ship design can be used to identify 
probable symptomatic passengers that develop fever. Personalized Radio Frequency Identification 
(RFID) sensors can provide additional feedback regarding the risk of disease transmission in case 
symptoms of a disease are detected in a monitored environment of the ship. These sensors provide 
information regarding the number of passengers in the room, as well as personalized information 
that could assist in the RA process, e.g., contact with an infected passenger. 

 

Table 1: Possible sensors (HS4U and beyond) 

AUDIO 
SENSOR 

Audio sensor, e.g., microphones (symptom detection in rooms/public spaces) 

DNA/RNA 
HVAC 

Pathogen (DNA or RNA) monitoring system for HVAC (any pathogen/primarily for 
common areas)  

DNA/RNA 
WATER 

Pathogen (DNA or RNA) monitoring system for blackwater (any pathogen detection/full 
ship) 

THERMAL 
CAMERA 
SENSOR 

Thermal camera (any pathogen/fever detection/entrance & dining areas) 

PEOPLE 
COUNTING 
SENSOR 

RFID or similar sensor that can be used to count the number of persons in a room) 

CHLORINE 
SENSOR 

Chlorine level sensor in swimming pool (norovirus, GI diseases) 

 

 Empirical risk levels of compartment 

Considering the identified areas based on the available ship schematics and feedback from the 
partners, a list of empirical risk levels for each compartment of the ship was generated, as illustrated 
in Figure 7. Related studies (Pluchino et al., 2021; Ventikos et al., 2022) provided additional feedback 
in regards to these risk levels as it can be observed in Figures 7 & 8, respectively. 
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Figure 7: Risk levels of ship compartments provided by partners of the HS4U project. 

 

 

Figure 8: Empirical risk levels of ship compartments based on low, medium and high exposure risk. 

 

Figure 9: Empirical risk levels of ship compartments based on a spectrum of category levels from low to high 
(green to red). 
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 Air-filtration, ventilation and sewage system  

Schematics of the air-filtration, ventilation, and sewage system of the Celestyal Discovery cruise ship 
were acquired in the scope of the HS4U project. The HVAC schematics can be observed in Figures 
10-12, where different air-conditioning units and fans of the system are denoted with various colors 
depending on the type of unit used in each indoor space, e.g., orange, purple and cyan. These 
schematics were utilized to conduct simulations, allowing us to analyze the potential spread of 
airborne pathogens within the cruise ship. These simulations played a crucial role in understanding 
the flow dynamics and potential contamination pathways. In addition, the results of these simulations 
were utilized to develop the biomedical risk assessment model presented in Section 3. Furthermore, 
acquired schematics of the blackwater (Figures 13-16) and greywater (Figure 17) sewage system 
have been obtained. These schematics can provide insights into the probable routes of waterborne 
pathogens within the ship. 

 

Figure 10 Schematics of the HVAC system for Decks 3-5 of the Celestyal Discovery cruise ship. 
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Figure 11 Schematics of the HVAC system for Decks 6-9 of the Celestyal Discovery cruise ship. 

 
Figure 12 Schematics of the HVAC system for Decks 10-12 of the Celestyal Discovery cruise ship. 
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Figure 13 Schematics of the blackwater sewage system for Decks 1-2 of the Celestyal Discovery cruise ship. 

 
Figure 14 Schematics of the blackwater sewage system for Decks 3-5 of the Celestyal Discovery cruise ship 
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Figure 15 Schematics of the blackwater sewage system for Decks 6-9 of the Celestyal Discovery cruise ship 

 
Figure 16 Schematics of the blackwater sewage system for Decks 10-11 of the Celestyal Discovery cruise 
ship 
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Figure 17 Overview of the greywater pipeline system of the Celestyal Discovery cruise ship. 
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 BIOMEDICAL MODELING IN PASSENGER SHIP 

In the context of disease spread monitoring various sensors, such as thermal cameras, can be used 
to derive semantic information about the passengers and the condition of the different areas of the 
ship after proper analysis of the raw data they acquire, e.g., identify disease symptoms, such as 
fever, or identify increased passenger concentrations in public areas. The current guidelines and 
protocols, as well as the experience from multiple disciplines involved, such as experience from 
medical and naval personnel, can be integrated, e.g., as rules, into knowledge-based decision-
making systems, to automatically infer useful information for disease control. Such information may 
include the infection risk in different areas of the ship over time, and possible actions that need to be 
taken to limit the spread of the disease. Furthermore, simulation models can be used to predict the 
evolution of the disease spread considering both microscopic parameters, such as the physical 
properties of the pathogens and their molecular interactions, and macroscopic parameters, such as 
the motility of the passengers on board.  

A cruise ship may include multiple decks with different spaces accessible by the passengers, 
e.g., cabin corridors, lounges with sitting areas, shops, and outdoor spaces, such as canteens and 
swimming pool areas. The risk for the spread of an infectious disease in these spaces may vary, 
e.g., bathrooms and restrooms are likely to exhibit a higher risk than free spaces; therefore, closer 
monitoring with special sensors may be required.  

Figure 18 provides a schematic representation of the architecture of a generic RA model 
(GRAM). A fundamental component of this architecture is the RA node (RAN) (Figure 18 (a)). GRAM 
is fully modular, composed of multiple interconnected RANs, set up for local monitoring and decision 
making in different areas within a cruise ship, as illustrated in Figure 18(b). A RAN ρ considers an 
environment e in a ship area of interest, monitored by a set of sensors. The raw data from the 
sensors, along with relevant data that may be available from the information system of the ship, are 
processed and analyzed to recognize and extract semantic information about the status of the 
environment and possible events taking place in that environment, e.g., using a machine learning 
(ML)-based classification system. This higher-level information is provided as input into a decision-
making algorithm designed to infer the risk 𝑟ఘ of the environment being contaminated with a 

pathogen, such as SARS-CoV-2, and possible actions 𝑎ఘ to mitigate this risk. Implementing the 

inferred actions depends on the confidence of inferred decisions. If the confidence is low, implying 
high uncertainty based on the available data, a simulation module is activated. The simulation 
module will provide RAN with additional data that could enhance the confidence of the decision 
making. Running simulations will enable testing various alternative scenarios in silico, e.g., using 
different passenger populations and activities, or predicting the outcome of different mitigation 
measures. Thus, based on the predicted data, the decision-making module should be able to infer 
decisions of higher confidence about the risk of disease spreading over time. It is important to 
consider the risk as a function of time, 𝑟̅ఘ(𝑡), for future values of t, because the spread of a disease 

depends on the evolution of pathogens both in space and time. Also, the decision-making module 
will also be able to infer the actions for risk mitigation with higher confidence. These actions will result 
in changes in the monitored environment e, and the whole monitoring and disease control process 
will follow a closed-loop approach (where the decision-making module plays the role of the 
controller), like the one typically followed in automatic control systems and robotics (Niku, 2020).  
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(a) 

 

(b) 

Figure 18: Generic closed-loop model for disease control in passenger ships. (a) Risk assessment node. (b) 
Multi-node risk assessment. 

The actions needed to effectively mitigate the risk of the spread of an infectious disease, should 
consider social aspects, since a cruise ship is usually a diverse human community that includes 
people with different personalities, ages, cultural background, and habits. Also, passengers are 
customers investing in their cruise vacation, and despite the critical situation that must be managed 
by strictly following relevant health protocols, they should feel comfortable and convenient within a 
safe, caring environment. To this end this chapter introduces the concept of the Crew-in-the-Loop 
(CiL). Instead of having a fully autonomous actuation system for disease spread control, the CiL 
approach considers that the crew is continuously being informed by the decision-making system 
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about the risk in different spaces of the ship and a set of possible mitigation actions that can be 
taken. Thus, the crew will be able to select socially appropriate ways to implement the actions 
suggested by the system. Such actions may or may not involve personal contact with the 
passengers, depending on the situation and the passengers’ profile, e.g., different approaches would 
be required for kids or elderly adults. 

An advantage of using automatic systems for decision making is that they can incorporate 
knowledge from multiple domain experts and other sources; thus, being able to infer a less subjective 
decision. However, it is almost inevitable to infer decisions without an error likelihood, mainly due to 
the uncertainty introduced in the input data, the acquisition of knowledge (e.g., from training data, or 
directly from experts) and its representation, and in the reasoning, process used for the inference. 
Such uncertainty often affects users’ trust in the system’s decisions, resulting in limited compliance 
of the users to the actions the system may recommend. Enhancing the users’ trust in automatic 
decision-making requires that the system is able to explain the inferred decisions, e.g., by providing 
the basis and/or the reasoning steps for these decisions.   

Considering that the passengers can move between the different spaces of a cruise ship, the 
decision-making module of a RAN should also consider the risks inferred from other RANs within 
the vessel, e.g., by following a decision-fusion approach, such as a weighted aggregation of these 
risks (Torra & Narukawa, 2007). Therefore, as illustrated in Figure 18(a), the decision-making 
module receives as an additional input a set of risks {𝑟̅ఘᇱ} originating from RANs 𝜌′ ≠ 𝜌 set up in other 

spaces. For example, the abstract scheme of Figure 18(b), shows that a RAN may receive input 
from other RAN setups in different spaces of the different decks; therefore, this way, RANs may 
address wider areas, even the whole ship (𝜌௦௛௜௣).  

To make this concept more concrete, an example multi-node GRAM instantiated for the cabin 
spaces, a cabin corridor, and a lounge, is illustrated in Figure 19. Let us consider a scenario where 
cabins have a privacy-preserving microphone sensor to monitor sounds relevant to the symptoms of 
an infectious disease, e.g., sneezing, coughing etc., or relevant to passengers’ activities that may 
result in a contamination, e.g., visiting the toilet. As illustrated in Figure 19 (a) the data analysis 
module of the cabin’s RAN receives as input the sounds captured by the microphone but also 
relevant data about the passenger from the information system of the ship. The semantic data 
resulting from the data analysis are subsequently inputted into the decision-making module. 
Assuming that the inferred decision about the risk of space being infected by a pathogen, e.g., SARS-
CoV-2, Norovirus etc., has a sufficiently high confidence level, the system informs the crew to take 
safety measures, e.g., the ship’s medical doctor (MD) to examine the situation and to provide masks 
and sanitizers to the passengers in the cabin if necessary. 

Considering that all cabins in the corridor of the ship are equipped with the same RANs, a 
RAN dedicated to the corridor area can be set up. Figure 19 (b) illustrates such a RAN, in a corridor 
area without any sensors. The data analysis module of this RAN processes relevant data from the 
ship’s information system, e.g., if the cruise ship has stopped in a destination or not, embarkation 
and disembarkation data, and the processed data are entered into the decision-making module, 
which co-evaluates the risks inferred from the RANs of all other cabins in the corridor. Similarly, the 
risk of a lounge area is inferred by considering the risk inferred from the cabin corridor that resides 
on the same deck. Figure 19 (c) illustrates such an example, where the lounge has a sensor to count 
the passengers entering and/or leaving the area. Also, in this case, it is assumed that the confidence 
of the output risk is initially low; therefore, a simulation should be run to produce additional (predicted) 
data to increase the confidence. Considering the structure of the lounge space, the passengers’  
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(a)  

 

(b)  

 

(c) 

Figure 19: Example implementations of the closed-loop model for different ship spaces. (a) Cabin. (b) Cabin 
corridor. (c) Lounge 

crowd, and the probability of them being infected (e.g., based on the RAN of the cabin corridor), a 
hybrid CFD and agent-based simulation of the crowd, could provide predictions enabling a more 
accurate estimation of the risk in the lounge 𝑟̅ఘ೗

(𝑡). Given that risk, actions may include the 
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presentation of messages in the lounge television sets to preserve distances, and crew in the lounge 
entrances prohibiting the entrance if the space is too crowded.  

Considering the multi-module nature of the proposed closed-loop model, several modules 
needed to be implemented. To achieve that, a literature review was contacted to identify state-of-
the-art methods for monitoring, risk assessment and simulation of disease outbreaks. Methodologies 
for risk assessment were examined, and several datasets were selected to assist the development 
of the decision-making module. In addition, simulation methods for disease spread were considered 
as part of the simulation module and several simulation scenarios were conceptualized based on 
the available sensors. Software related to decision-making, simulation and visualization was also 
explored to assist with the development of the proposed closed-loop model.  

 DECISION MAKING FOR RISK ASSESSMENT  

RA is defined as the process of gathering, processing, and storing information in order to assign a 
level of risk to specific scenarios, such as an epidemic outbreak (Organization & others, 2012). The 
RA cycle can be divided into three stages, i.e., risk identification, risk analysis, and risk evaluation 
(Han, 2020). RA is usually coupled with control measures and continuous evaluation of the risk 
(Organization & others, 2012). RA tools have been employed in healthcare to assess and manage 
various scenarios, such as disease transmission, assessment of the potential risk for a patient to 
develop different diseases, or even management of hospital operations. From toxicology to epidemic 
outbreaks, RA tools have been proposed to mitigate potential hazardous situations, such as 
exposure to toxic chemicals (Faustman & Omenn, 2012), transmitted diseases (Ross et al., 2022), 
or predict the risk of developing high-morbidity diseases, e.g., cancer (Ewing et al., 2016). COVID-
19 has greatly affected the healthcare sector (Moynihan et al., 2021; H. Xiao et al., 2021) and this is 
also apparent based on the influx of scientific research papers related to the disease.  

The RA field has also been in the center of this trend as it is paramount for managing 
epidemic outbreaks (Calò et al., 2020; Recchia et al., 2022). Epidemic outbreaks on cruise and cargo 
ships have been extensively analyzed in the relevant literature (Bertagna et al., 2021; Guagliardo et 
al., 2022; L.-S. Huang et al., 2021; Kordsmeyer et al., 2021; Rooney et al., 2004; Willebrand et al., 
2022); nonetheless, there is a limited number of suggested RA tools applied in such scenarios 
(Braidotti et al., 2022; Ventikos et al., 2022; Z. Wang et al., 2020). Regarding the broader spectrum 
of disease spread RA, the most common tools are based on three principal types of methods, i.e., 
knowledge-based, ML, and hybrid methods. 

Knowledge-based methods are methods that contain information in the form of rules or 
relations that guide the system to decide the appropriate action. Experts’ knowledge or experimental 
data can be analyzed to generate these rules. Statistical analysis and mathematical modeling of 
patient data combined with golden-standards are also employed to generate such rules and establish 
the knowledge base that the health practitioners should utilize to make informed decisions 
(Pirneskoski et al., 2019). 

Regarding the broader spectrum of disease-spread-related RA methods, conventional 
knowledge-based methods, such as case-based-reasoning (CBR) or expert methods that are 
employed in emergencies (Duan & Jiao, 2021; Han, 2020). Emergency protocols are usually created 
with the help of experts in the healthcare sector, often based on Delphi studies, to assess the risk 
during epidemic outbreaks (Ling et al., 2021; Organization & others, 2012; Wen-yan, 2012). The 
World Health Organization (WHO) has also established a RA tool based on dis-ease characteristics 
and experts’ opinions focused on influenza pandemic out-breaks (Organization & others, 2016). CBR 
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methods are derived by extracting information from previous scenarios, i.e., previous pandemic 
outbreaks (Duan & Jiao, 2021). Despite the importance of utilizing information from past events to 
create informed RA tools, these methods lack flexibility in terms of adjustability to new pathogens 
and different conditions (Duan et al., 2022). Apart from the use of experts and previously acquired 
information, epidemic RA methods should also take into consideration the nature of the pathogens, 
e.g., virus or bacteria, that causes the disease, since it is essential for estimating the risk of a 
potential pandemic outbreak (Schr der, 2020). 

During the early days of the COVID-19 pandemic, transmission-specific information was not 
clear even amongst experts. Therefore, certain studies attempted to estimate transmission and 
fatality factors by statistically analyzing epidemic data, such as those from the Diamond Princess 
cruise ship (Mizumoto & Chowell, 2020; Mizumoto et al., 2020a; Russell et al., 2020; S. Zhang et al., 
2020). These methods could be helpful if incorporated in RA tools to predict epidemic outbreaks of 
recently discovered communicable diseases, especially in maritime scenarios. To the best of our 
knowledge, RA tools related to epidemic outbreaks in ships have been based only on knowledge-
based methods (Braidotti et al., 2022; Ventikos et al., 2022; Z. Wang et al., 2020). An early study 
identified risk factors related to waterborne diseases associated with ships by analyzing data from 
previous epidemic outbreaks; however, these data were not incorporated in an RA tool (Rooney et 
al., 2004). In (Z. Wang et al., 2020), an RA framework was proposed to assess the risk of epidemic 
outbreaks in ships based on the ports that they have visited. The risk of an epidemic outbreak was 
estimated based on a rule-based system that was employed to assign a level of risk to each ship, 
i.e., low, medium, and high risk. The system utilized a proposed cumulative exposure index (CΕI) for 
each ship to assign a level of risk, by comparing the CDI to a reference index inferred from the 
Wuhan outbreak data (e.g., high risk when CΕI is higher than the reference index). This index for 
each ship was provided by a mathematical model that calculated the infection exposure during the 
last 14 days based on the population density and the growth factor of the visited countries. The 
growth factor was a proposed mathematical equation that accounted for the infection risk in each 
country based on the daily change of confirmed cases. Casual networks are another knowledge-
based approach that has been used for assessing the risk of infection in cruise ships (Oliveira et al., 
2021). 

Uncertainty is inherent in medical decision making (Begoli et al., 2019; Helou et al., 2020), 
which also applies in the RA of epidemic outbreaks (Rasmussen & Sahay, 2021). Fuzzy logic has 
been proven helpful to combat this problem, since it exploits the ambiguity found in real life (Arji et 
al., 2019). This is further highlighted in (Jiang et al., 2022), where the fusion of fuzzy systems with 
edge computing is considered a promising methodology for RA of epidemic outbreaks. In addition, 
uncertainty may arise in the early stages of an epidemic outbreak, thus fuzzy logic was employed to 
account for that. Fuzzy cognitive maps (FCM) have been used to assess the risk of an epidemic 
outbreak on a national level and combine a knowledge-based approach with fuzzy logic (P. P. 
Groumpos & Apostolopoulos, 2021). FCMs have been also utilized to predict the risk of positivity to 
infectious diseases (P. P. Groumpos, 2021; P. Groumpos, 2021). In (P. P. Groumpos, 2021), an 
FCM with 10 symptoms-concepts that is considering the causality factors of COVID-19 infections is 
proposed. Similarly, an FCM with 16 symptoms-concepts was proposed to infer the probability of 
COVID-19 infection in (P. Groumpos, 2021). Other fuzzy logic-based methods have utilized rule-
based systems to assess the risk of infection and disease spread on a national level (Cihan, 2020; 
X. Guo et al., 2022; Kalampakas et al., 2024; Padmanabhan et al., 2021; Painuli et al., 2020). These 
types of methods can be especially useful in domains with insufficient data that hinder the 
implementation of a data-driven approach.  
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 Available data 

Knowledge-based RA methods for decision-making do not rely on large datasets, as they utilize 
experts’ knowledge to assess the risk of a situation. Nevertheless, prior knowledge of incidents in 
the form of even small datasets can benefit the inference process by providing additional information 
that experts might not consider in their decision-making process. This can be done by utilizing the 
provided data to statistically analyze each incident and extract essential information that can be 
utilized in the decision-making module.  

The proposed RA method utilizes sensors to detect the presence of an infectious disease 
and utilizes the analyzed information provided by the sensors and information system of the ship to 
infer a risk level. Therefore, a knowledge-based method would benefit from datasets that contain 
information entailing the causality between symptoms and infection risk, information about epidemic 
outbreaks in ships and datasets that can be utilized to detect disease-related symptoms, e.g., cough 
detected from an audio sensor. Nevertheless, there is limited data available for disease transmission 
in enclosed areas of cruise ships. Most studies are aimed at examining the long-term disease 
transmission in cruise ships. In addition, the datasets resulting from these studies are often 
inconsistent with each other. The rest of this Subsection presents a summarization of the available 
data related to assessing risk of infection based on symptoms of the individual, long-term disease 
transmission in cruise ships based on the number of infected passengers and symptom 
classification, i.e., whether a symptom is classified as disease related.  

Risk of infection 

A crucial aspect of assessing the risk of disease transmission in enclosed areas of the cruise ship is 
the efficient identification of symptoms. These symptoms can be utilized as risk factors in the 
biomedical RA model. The two most prominent viruses that were examined in the context of this 
project are COVID-19 and norovirus. The COVID-19 virus is considered an airborne transmitted 
disease, whereas norovirus is considered a waterborne transmitted disease. Both of these viruses 
can also be transmitted through surfaces. Thus, they were selected due to their potential to rapidly 
spread in a closed environment such as a cruise ship and their capability to spread through different 
means of transmission. Since these viruses are highly transmissible, they have been extensively 
studied. These studies can further assist in creating an accurate biomedical RA model. Based on 
the available literature and input from the partner of the project HPI, several symptoms related to 
COVID-19 (Table 2 and Table 3) and norovirus (Table 4 and Table 5) have been identified, aiming 
to assess the probability of a passenger being infected. The results are shown in logic terms (Low, 
Medium, High), together with the numerical probability, which was retrieved from the literature 
(Alimohamadi et al., 2020; Grant et al., 2020; Rosa Mesquita et al., 2021). 

According to the findings of Table 2, the ranking of COVID-19 symptoms sorted from the highest to 
the lowest probability of being infected when displaying the relevant symptom was: fever, dry 
cough, fatigue, dyspnea, diarrhea and vomiting. Furthermore, according to (Antonelli et al., 
2021), the following symptoms combinations increase the likelihood of a person having COVID-19:  

1. Fever, fatigue, headache, cough, dyspnea (92% sensitivity)  

2. Fever, cough, dyspnea, anosmia / ageusia (69% sensitivity)  

3. Fever, cough, dyspnea (60% sensitivity)  
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4. Cough, dyspnea (46% sensitivity).  

Table 2 Probability of a passenger being infected with COVID-19, should one of the following 
symptoms be detected. 

I f  one of  the fo l lowing 
symptoms is detected via 
a sensor , how probable is  
i t  for  a passenger to have 

the condi t ion? 

Probabil ity  

Numerical  value  

Low Medium High 

1. Fever (Thermal camera, 
smart wearable) 

     

81.20%(Alimohamadi et al., 
2020), 78% (Grant et al., 

2020), 58.66%(Rosa 
Mesquita et al., 2021) 

2. Coughing (Audio sensor)      

58.50%(Alimohamadi et al., 
2020), 58%(Grant et al., 

2020), 54.52% (Rosa 
Mesquita et al., 2021) 

3. Sneezing (Audio sensor)      NA 

4. Vomiting (Audio sensor)      
 4%(Grant et al., 2020), 

7.33% (Rosa Mesquita et al., 
2021) 

5. Decreased Oxygen level 
(Smart wearable, P.O.) 

     

26.50%(Alimohamadi et al., 
2020), 23%(Grant et al., 

2020), 30.82% (Rosa 
Mesquita et al., 2021) 

6. Fatigue (Smart wearable, 
H.R. meter) 

     

38.50%(Alimohamadi et al., 
2020),31%(Grant et al., 
2020), 28.16% (Rosa 
Mesquita et al., 2021) 

7. Diarrhea (body waste 
sensor?) 

     

7.60%(Alimohamadi et al., 
2020),10%(Grant et al., 

2020), 9.59%(Rosa Mesquita 
et al., 2021) 

8. Dehydration (Smart 
wearable) 

     NA 

In addition, the effect of other factors on the total probability of a person being infected with 
COVID-19 was examined when one of the symptoms above was present. Specifically, the factors 
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under examination were age, gender, contact with a confirmed case and travel to country with 
epidemic load. These factors were provided to the project partner HPI by UTH and are expected to 
be available through the ship’s reception department. 

Table 3 Probability of a passenger being infected with COVID-19 if one of the following factors is 
present. 

Does any of  the below factors 
increase the probabi l i ty  of 

infect ion when a symptom from 
the above l is t  is  present? 

Numerical  value  

Comment  Yes No 

Age 

Children – teens 
(3-16) 

     

Young (17-34)      

Middle age (35-
64) 

     

Elderly people 
(65+) 

     

Gender 
Male      

Female      

Contact with confirmed case      

Travel to country with epidemic load    

When the country of 
departure is experiencing a 
more intense transmission of 
SARS-CoV-2 virus than the 
country of arrival, the risk of 
adversely affecting the 
epidemiological situation in 
the country of arrival is higher. 

As seen in Table 3, there is no association between age and gender classification with 
increased probability of being infected with COVID-19, in the cases when a passenger displays a 
symptom (Biswas et al., 2020). On the other hand, contact with confirmed cases (Areyou higher 
riskSevereillness COVID-19? - Ada — ada.com, n.d.) or travel to countries with epidemic load 
(Organization & others, 2020b; WHOadvice international trafficRelation SARS-CoV-2 Omicron 
variant (B.1.1.529) — who.int, n.d.) increase the risk of infection.  

Additional factors such as smoking, comorbidities and vaccination were also investigated. 
The evidence for the relationship between tobacco smoking and COVID-19 incidence remains 
uncertain and impaired by a number of case series. There is only a certain relationship between 
smoking and risk of progression of COVID-19 (Gallus et al., 2023; Simons et al., 2021). Regarding 
comorbidities, COVID-19 may be more severe and prolonged in individuals with medical 
comorbidities such as hypertension, diabetes, chronic kidney disease, coronary heart disease, 
chronic obstructive pulmonary disease (COPD), cerebrovascular disease, chronic liver disease, 
arrythmia, ischemic heart disease, heart failure, cancer, and obesity. However, there is no direct 
evidence that the presence of comorbidities increases the risk of infection (Vardavas et al., 2022; J. 
Yang et al., 2021; Yekedüz et al., 2020). People who received a full course of vaccination may still 



D3.2 –  R isk  assessment  methodo log ies ,  models  and a lgor i thms  
Vers ion 2 .0  –  Date 10.03.2025  
 

  

 

Page 40 

 

experience flu-like symptoms but are less likely to suffer from severe disease and require 
hospitalization. Nevertheless, the risk of infection remains the same as in the general public (Williams 
et al., 2022). 

Table 4 Probability of a passenger being infected with Norovirus, should one of the following 
symptoms be detected. 

I f  one of  the fo l lowing 
symptoms is detected via 
a sensor , how probable is  
i t  for  a passenger to have 

the condi t ion? 

Probabil ity  

Numerical  value  

Low Medium High 

1. Fever (Thermal camera, 
smart wearable) 

     
31.20%(Arias et al., 2010), 

16.70%(Y. Wang et al., 2018) 

2. Coughing (Audio sensor)      NA 

3. Sneezing (Audio sensor)      NA 

4. Vomiting (Audio sensor)      
 64.90%(Arias et al., 2010), 

95.30%(Y. Wang et al., 2018) 

5. Decreased Oxygen level 
(Smart wearable, P.O.) 

     NA 

6. Fatigue (Smart wearable, 
H.R. meter) 

     7.60%%(Arias et al., 2010) 

7. Diarrhea (body waste 
sensor?) 

     
78.80%(Arias et al., 2010), 

10.40%(Y. Wang et al., 2018) 

8. Dehydration (Smart 
wearable) 

     NA 

Based on Table 4, ranking of norovirus symptoms varies for different age groups (Arias et 

al., 2010), (Y. Wang et al., 2018). The most common symptom in children is vomiting, whereas in 
adults is diarrhea. Fever is the third most common symptom and fatigue is also reported in the 
literature. The impact of other factors on the total probability of a person being infected with 
Norovirus, when one of the aforementioned symptoms was present, was also explored. The factors 
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reviewed were age, gender, contact with a confirmed case and travel to a country with epidemic 
load. As presented in Table 5, there is an association with age classification and norovirus infection 
as higher incidence rates occur in two different age groups (children and elderly) (Arias et al., 2010). 
Moreover, females are more probable to develop acute symptoms than males (Verstraeten et al., 
2017).  

Table 5 Probability of a passenger being infected with Norovirus if one of the following factors is 
present. 

Does any of  the below factors 
increase the probabi l i ty  of 

infect ion when a symptom from 
the above l is t  is  present? 

Numerical  value  

Comment  
Yes No 

Age 

Children – teens 
(3-16) 

  

  

The higher incidence rates 
occur in the age groups 5-14 
(children and teens) and >65 

(elderly people)  

  

Young (17-34)    

Middle age (35-
64) 

   

Elderly people 
(65+) 

  

Gender 

Male    
Infectious gastro-enteritis 
due to Norovirus, occurs 

more frequently to females 
than males.  

Female   

Contact with confirmed case     

Travel to a country with epidemic 
load 

  

When there is a norovirus 
outbreak in a country, 
incidence rates are 
increasing. 

It is important to acknowledge that the symptoms associated with norovirus infection are 
indistinguishable from those of food poisoning. The main difference is that food poisoning symptoms 
have an earlier onset than those of norovirus (30min – 8hours vs 12hours-48hours). However, 
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norovirus symptoms last longer (more than a week vs 48 hours) (Mutchler, n.d.). As in COVID-19, 
contact with confirmed cases greatly increases the risk of infection (Marsh et al., 2018). Additional 
factors such as smoking, comorbidities and vaccination are un-associated with an increase in the 
risk of infection with Norovirus. 

Based on the results, vomiting was found to be the primary driver of norovirus transmission. 
Results presented in three relevant studies (Adams et al., 2020; Y. Chen et al., 2023; Kirby et al., 
2016) suggest that individuals who vomit are more infectious, whereas diarrhea also plays a role in 
norovirus transmission, but to a lesser extent than vomiting. It is also reported that a single vomiting 
event can contaminate a large area, hence the viral concentration tends to increase with each 
additional vomiting episode (Kirby et al., 2016). This results in a consequent increase in the risk of 
transmission. 

Available datasets of COVID-19 symptoms were also considered when assessing the potential 
use of each symptom as a risk factor for the biomedical RA model. The “COVID-19 Symptoms 
Checker” dataset provides information to identify whether any person is having a coronavirus 
disease or not based on some pre-defined standard symptoms. These symptoms are based on 
guidelines given by the World Health Organization (WHO) and the Ministry of Health and Family 
Welfare, India (The results or analysis of these data should not be taken as medical advice). The 
dataset contains seven major variables that will be having an impact on whether someone has 
coronavirus disease or not, the description of each variable are as follows, Country: List of countries 
person visited. Input features: 

 Age: Classification of the age group for each person, based on WHO Age Group Standard 
Symptoms: According to WHO, 5 are major symptoms of COVID-19, Fever, Tiredness, 
Difficulty in breathing, Dry cough, and sore throat. 

 Experience any other symptoms: Pains, Nasal Congestion, Runny Nose, Diarrhea and Other. 
Severity: The level of severity, Mild, Moderate, Severe 

 Contact: Has the person contacted some other COVID-19 Patient. 

With all these categorical variables, a combination for each label in the variable will be generated 
and therefore, in total 316800 combinations are created (link). It should be noted that this dataset is 
not validated. 

The purpose of the “Symptoms and COVID Presence (May 2020 data)” dataset is to provide 
symptoms as input and it should be able to predict if COVID is possibly present or not (It cannot be 
used for serious medical purposes) (link). This dataset contains more categories than the “COVID-
19 Symptoms Checker” dataset, including travel abroad, some comorbidities, but not severity level 
(only yes or no if infected). It should be noted that this dataset is not validated. 

Another dataset that is also evidence-based is the “Flatten” dataset. This dataset is the 
Canada’s first publicly available pre-clinical COVID-19 dataset, based on survey responses collected 
from 294,106 Canadians from March 23rd until July 30th 2020, using a platform developed by 
Flatten, a Canadian non-profit organization (Jain, Charpignon, et al., 2021). This data is provided for 
academic and industry research (link), through the PhysioNet research data resource (Goldberger 
et al., 2000). The Flatten dataset consists of three versions of the survey referred to as Schema 1, 
Schema 2, and Schema 3. As compared to Schema 1, subsequent versions either include additional 
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questions or refine existing questions and answer options. Each survey response is stored as an 
individual record (row) in the dataset. 

Across all survey versions, each record in the Flatten dataset consists of temporal, spatial, 
and survey response attributes. Temporal data include the weekly number or month during which 
the survey response was recorded. Survey response data primarily consists of a binary variable 
indicating whether the respondent is aged 60 or over, and their symptoms related to COVID-19 at 
the time of response (i.e., fever, cough, and shortness of breath). The survey also asks whether the 
survey participant has travelled outside of Canada in the past 14 days, or if they suspect they have 
been in contact with someone infected with COVID-19 in the past 14 days. 

Survey responses associated with Schema 1 are the most numerous, consisting of 263,640 
individual level records submitted in the early weeks of the pandemic (March 23rd to April 8th of 
2020). These responses also correspond with the peak of Flatten’s presence in the media. Survey 
responses associated with Schema 2 consist of 14,932 records (April 8th to April 28th of 2020), and 
Schema 3 consists of 15,534 records (April 28th to July 30th of 2020). Although Schema 2 and 
Schema 3 contain far fewer records than Schema 1, they contain valuable information about the 
demographic profile of the survey participant that Schema 1 does not have, such as their race, 
ethnicity, sex, age, and pandemic-induced most pressing needs (i.e., food, medical, financial, 
emotional, other). 

The raw Flatten dataset consists of 498,211 survey submissions (90.81% responses from 
unique participants) with granular temporal, spatial, and survey participant socio-demographic and 
health factors data. Only a de-identified subset of survey responses is made available in this 
version’s release, due to ethical as well as privacy and identity protection reasons. Furthermore, only 
the subset of survey responses where the participant indicates living in Ontario are made available, 
given the prevalence of the province in the collected data records (60.3% of the responses). 

The dataset contains four variables related to the health status of a survey respondent, 
labelled as follow: “probable”, “vulnerable”, “is_most_recent”, and “any_medical_conditions”. The 
definition of these variables was elaborated based on guidance from public health professors of the 
University of Toronto Dalla Lana School of Public Health at the time of which data was collected. 

A survey respondent was considered to be a “probable” COVID-19 case if they fit into one of 
the three following combinations: have come in contact with illness; have travelled outside of Canada 
and have the symptoms (fever, cough, shortness of breath); have travelled outside of Canada and 
have the symptoms (cough, shortness of breath). The decision tree of this definition can be found in 
the following script: https://github.com/flatten-official/flatten-
scripts/blob/staging/dags/sanitisation/sanitisation.py). 

A survey respondent was considered to be “vulnerable” to COVID-19 disease if they were 
aged 65 or more or if they had at least one of the following comorbidities: diabetes, cancer, diabetes, 
high blood pressure, heart disease, asthma or other breathing-related illness, immunocompromising 
condition, kidney disease, history of stroke. The code can also be found in the script linked above. 

A survey response is considered the most recent if it is the most recent submission from the 
respondent based on their unique user identifier. This variable is used in the event a respondent 
makes multiple survey submissions across the survey data collection time period. 

Considering this analysis, the most prominent symptoms for COVID-19 and norovirus were 
examined to determine which symptoms could also be used as risk factors for transmission of these 
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diseases. In case of COVID-19, fever, coughing and fatigue are considered symptoms with higher 
correlation to a positive case of the virus (Table 2). In this study, fever and coughing were selected 
as risk factors in the Decision-Making Module for COVID-19 transmission (see Subsection 5.1), since 
these are symptoms that can contribute to pathogen transmission (see Section 4 and Subsection 
5.1.1). Regarding norovirus, diarrhea, vomiting, and fatigue were considered the most correlated 
symptoms to the infection (Table 4). In addition, norovirus incidences have been identified to be 
more common for children in the 4-15 age group (Table 5). In the case of norovirus, diarrhea and 
age were considered as risk factors in the Decision-Making Module, since these were also identified 
as the most correlated factors of norovirus transmission (see Subsection 5.1.5). 

Risk of long-term disease transmission 

An outbreak of coronavirus disease 2019 (COVID-19) unfolded on board a Princess Cruises’ ship 
called the Diamond Princess. Shortly after arriving in Yokohama, Japan, this ship had been placed 
under quarantine orders from 5 February 2020, after a former passenger had tested positive for the 
virus responsible for the disease (i.e., severe acute respiratory syndrome coronavirus 2; SARS-CoV-
2), subsequent to disembarking in Hong Kong. By 21 February 2020, 2 days after the scheduled 2-
week quarantine came to an end, a total of 634 people including one quarantine officer, one nurse 
and one administrative officer tested positive for SARS-CoV-2. These individuals were among a total 
of 3,711 passengers and crew members on board the vessel. Laboratory testing by PCR had been 
conducted, prioritizing symptomatic or high-risk groups. Daily time series of laboratory test results 
for SARS-CoV-2 (both positive and negative), including information on presence or absence of 
symptoms from 5 February 2020 to 20 February 2020 were extracted from secondary sources [1]. 
The reporting date, number of tests, number of people tested positive by PCR (i.e., cases), and 
number of symptomatic and asymptomatic cases at the time of sample collection are provided, while 
the time of infection and true asymptomatic proportion are not available. 

A total of 634 people tested positive among 3,063 tests as of 20 February 2020. Of 634 
cases, a total of 313 cases were female and six were aged 0–19 years, 152 were aged 20–59 years 
and 476 were 60 years and older. Cases were from a total of 28 countries, with most being nationals 
of six countries, namely Japan (n = 270 cases), the United States (n = 88 cases), China (n = 58 
cases; including 30 from Hong Kong), the Philippines (n = 54 cases), Canada (n = 51 cases) and 
Australia (n = 49 cases). Several variations of the outbreak have been identified in the literature 
(Emery et al., 2020; Mizumoto et al., 2020b; Nishiura, 2020; J. Zhang et al., 2020). 

In (Codreanu et al., 2021), the successful use of the ship as a quarantine facility during the 
response to the outbreak on the MS Artania, which docked in Western Australia, Australia. The 
health-led 14-day quarantine regime was based on established principles of outbreak management 
and experiences of coronavirus disease outbreaks on cruise ships elsewhere. The attack rate in the 
crew was 3.3% (28/832) before quarantine commencement and 4.8% (21/441) during quarantine on 
board. No crew members became symptomatic after completion of quarantine. Infection surveillance 
involved telephone correspondence, face-to-face visits, and testing for severe acute respiratory 
syndrome coronavirus 2. No serious health issues were reported, no response staff became infected, 
and only 1 quarantine breach occurred among crew. Onboard quarantine could offer financial and 
operational advantages in outbreak response and provide reassurance to the shore-based wider 
community regarding risk for infection. The data are provided in an unstructured format (image) with 
symptomatic/asymptomatic cases, number of disembarked individuals, age, categories 
(passengers, crew) in total. 
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On March 19, 2020, when the Ruby Princess docked in Sydney Harbor, nearly 2,700 tourists 
disembarked without being quarantined (Zhou et al., 2020). Subsequently, more than 600 people 
were infected with COVID-19 and 21 died. On April 22, 2020, another 115 crew members were 
allowed to disembark, 21 of whom tested positive for the new coronavirus. Of the 2,700 passengers 
who were allowed to disembark before the test results came out, almost 1700 were Australians, 
which further exacerbated the outbreak of COVID-19 in Australia, as well as in other countries. In 
the case of the Ruby Princess, passengers disembarked in Sydney without being quarantined, which 
suggests inadequate core capacity and insufficient supervision of the points of entry in Australia. 
The number of cases only counted the total number of confirmed cases of passengers and crews 
from the Ruby Princess. The data of March 31, April 3 to April 6, April 10 to April 12 were missing, 
the vacancies with missing data between two points were directly connected with lines. The number 
of cases only counted the number of confirmed cases of crews from the Ruby Princess. The data 
from March 21 to March 31, April 3 to April 6 were missing, the vacancies with missing data between 
two points are directly connected with lines. The data are provided in an unstructured format (image 
and text) with symptomatic/asymptomatic cases, number of disembarked individuals, age of 
infected, categories (crew, passengers), nationality and port embarked. 

On March 7, 2020, a passenger ship (2,500-passenger and 1,606-bed capacity) with 33 crew 
members sailed from Piraeus, Greece, to Cesme, Turkey, where an additional 350 crew members 
embarked on March 8, 2020 (Hatzianastasiou et al., 2021). For 21 days, the ship sailed without any 
disembarkations or embarkations until the first suspected coronavirus disease (COVID-19) case was 
reported to the health authority of the Piraeus port on March 28, 2020. We describe results of the 
outbreak investigation, including risk factors for transmission of severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). We collected data by completing standardized forms through 
interviews and medical examinations of all travelers onboard and by reviewing ship records and logs. 
We used descriptive statistics to analyze the study variables and performed univariate and 
multivariate analyses. In conducting clinical management of cases, the guidelines from the Hellenic 
National Public Health Organization (NPHO) for health measures on travelers and repatriation were 
followed, which were based on the European Union Healthy Gateways Joint Action advice for 
management of COVID-19 cases onboard ships. NPHO and the Piraeus Port Health Authority 
provided passengers with information about using medical facemasks at all times when outside of 
their cabins, as well as handwashing, physical distancing, and cleaning and disinfecting of cabins; 
ship officers supervised. Food preparation and laundry and cleaning services were halted; travelers 
were instructed to clean their own cabins and store used linens in plastic bags. Cleaning and 
disinfection of the terminal was done by a private company under supervision of the Piraeus Port 
Health Authority, after all travelers disembarked the ship at the port of Piraeus. A catering company 
provided packaged meals; personal hygiene supplies were also provided (including facemasks and 
hand sanitizer). Methods and results of the environmental sampling have been published elsewhere. 
Oropharyngeal specimens were collected from all travelers onboard. Molecular tests for SARS-CoV-
2 detection were performed by using the Cobas SARS-CoV-2 test qualitative assay and the Cobas 
6800/8800 System (La Roche, https://www.roche.com). Serologic tests were performed on blood 
specimens collected from 116 cases. Serum samples were initially tested with the Xiamen Boson 
Biotech (https://www.bosonbio.com) Rapid 2019-nCoV IgG/IgM Combo Test Card, a rapid lateral 
flow (immunochromatographic) test, and subsequently with the MAGLUMI800 chemiluminescence 
immunoassay (Snibe Diagnostic, https://www.snibe.com). This study was a public health response 
as part of activities of the Hellenic NPHO and local authorities (i.e., Piraeus Port Health Authority 
and Port Administration). Participants provided verbally informed consent for recording and 
processing of information during interviews, and written consent was obtained from participants for 
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blood specimen analysis. All required ethics considerations were applied according to rules of the 
Hellenic NPHO and the Ministry of Health. The first 3 symptomatic cases occurred on March 20 
among travelers (passengers and crew) of different nationalities and working departments (hotel, 
dining room service, and housekeeping [cabin steward]). The peak of the outbreak occurred during 
March 30–April 1. We conducted laboratory tests for SARS-CoV-2 and for antibodies during 3 follow-
up examinations. Travelers who tested positive were isolated onboard (except the first case-patients, 
who were hospitalized, and 2 travelers who were isolated in hotels designated by the government of 
Greece for that purpose). All travelers onboard who tested negative were considered contacts and 
quarantined individually in quarantine facilities ashore (hotels designated by the government of 
Greece), except 36 crew members who tested negative but quarantined in separate decks and 
facilities onboard to ensure safe ship operation. No deaths occurred; 7 patients were hospitalized, 
including the first patient, who was intubated. The data were provided in an unstructured format 
(image and text) with symptomatic/asymptomatic cases, number of disembarked individuals, age of 
infected, categories (crew, passengers), nationality and port embarked. 

A large outbreak of SARS-CoV-2 infections among passengers and crew members (60 cases 
in 132 persons) on a cruise ship sailing for 7 days on rivers in the Netherlands was investigated in 
(Veenstra et al., 2023). Whole-genome analyses suggested a single or limited number of viral 
introductions consistent with the epidemiologic course of infections. Although some precautionary 
measures were taken, no social distancing was exercised, and air circulation and ventilation were 
suboptimal. The most plausible explanation for the introduction of the virus is by people (crew 
members and 2 passengers) infected during a previous cruise, in which a case of COVID-19 
occurred. The crew was insufficiently prepared on how to handle the situation, and efforts to contact 
public health authorities were inadequate. The data are provided in an unstructured format (image 
and text) with symptomatic cases. Cases were identified based on symptoms and confirmed through 
tests after disembarkation. 

Classification of detected symptoms 

VocalSound (Gong et al., 2022) is a free dataset consisting of 21,024 crowdsourced recordings of 
laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. The 
VocalSound dataset also contains meta information such as speaker age, gender, native language, 
country, and health condition. This repository contains the official code of the data preparation and 
baseline experiment in the ICASSP paper VocalSound: A Dataset for Improving Human Vocal 
Sounds Recognition (Yuan Gong, Jin Yu, and James Glass; MIT & Signify). Specifically, we provide 
an extremely simple one-click Google Colab script (link) for the baseline experiment, no GPU / local 
data downloading is needed. The dataset is ideal for: 

 Build vocal sound recognizer. 
 Research on removing model bias on various speaker groups. 
 Evaluate pretrained on vocal sound classification to check their generalization ability. 
 Combine with existing large-scale general audio datasets to improve vocal sound recognition 

performance. 

Another dataset is the Dataset of sounds of symptoms associated with respiratory sickness. It has 
been created for the Pfizer Digital Medicine Challenge. Early detection of respiratory tract infections 
can lead to timely diagnosis and treatment, which can result in better outcomes and reduce the 
likelihood of severe complications. Respiratory sounds carry rich information that can be mined to 
develop automated approaches for detection of sickness behaviors like coughing and sneezing. In 
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this challenge, we invite you to build machine learning models for automatic detection of sickness 
sounds by using audio recordings from open datasets. The dataset was created using audio files 
from ESC-50 and AudioSet. We used the open source BMAT Annotation Tool to annotate this 
dataset. (link) 

 General Framework of the Biomedical Risk Assessment 
Model 

Real-life scenarios of epidemic incidents in ships can be simulated to assist the development of RA 
tools. In this project several scenarios have been selected based on the available sensors (Table 1), 
identified use cases and partners’ feedback. A general framework for RA of disease transmission in 
cruise ships is presented in the following Subsection (Figures 20 & 21) based on the literature review 
conducted in the scope of this project, the selected scenarios, and the available sensors. The 
selected scenarios including details related to a possible incidence of a disease transmission event 
are also presented in this Section. 

Monitoring: Sensors detect/identify a pathogen in the ship. 

Data Analysis: System analyses information provided by the sensors, the ship’s information system 
(retrospective data), and relevant external datasets (literature, web, etc.). 

Decision Making: System assesses risk based on the analyzed information. If confidence interval 
is sufficient, then inform crew members; otherwise run simulations until confidence reaches a 
sufficient level for decision making. 

Simulations: Run simulations based on physical/stochastic and/or epidemiological models. 

Reassess risk level: Updated and more informed decision-making based on provided data from 
simulations. 

 

Figure 20 Example of the RA node's workflow for a cabin scenario. 

An example of the proposed framework can be observed in Figure 20. The Sensor Module 
identifies coughing, and the Data Analysis module classifies it as disease caused. Then the Decision-
Making Module infers risk level with low confidence, which leads to the Simulation Module 
approximating a short-term simulation of the two people interacting in the cabin. This approximation 
is utilized by the Data Analysis module to infer a simulated risk that is then employed by the Decision-
Making module to make an informed decision with high confidence. 
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As highlighted in Subsection 3.1.1, there are only a few studies that focus on disease 
outbreaks in cruise ships. These studies are aimed at the long-term transmission of infectious 
diseases, such as COVID-19, and provide inconsistent information regarding the exact progress of 
the disease transmission, e.g., missing values or different estimated values for the number of 
infected passengers. Since there is no available dataset aimed at short-term RA in enclosed spaces 
of cruise ships, a knowledge-based fuzzy logic approach was examined in the Decision-Making 
module of the RA model. An example of such a fuzzy knowledge-based system that utilizes a 
Mamdani inference model can be observed in Figure 21. 

 

Figure 21 Example of a fuzzy knowledge-based system 

 Decision-Making Module 

A fuzzy rule-based system was employed in the decision-making module to infer the risk of disease 
transmission within these areas. To perform short-term transmission risk (TR) assessment on-board 
a knowledge-based method implemented through fuzzy rules was proposed by UTH in (Sovatzidi et 
al., 2024; Triantafyllou, Sovatzidi, et al., 2024). An overview of the proposed method is illustrated in 
Figure 22. 

 
Figure 22 Overview of the Decision-Making module process. 

The risk assessment process begins when one or more sensors identify disease-related symptoms 
inside a monitored environment (e). The characteristics of e, i.e., surface area, height, and maximum 
capacity are provided through the SIS. Then, the risk assessment process utilizes the data derived 
from the sensors and the SIS to assess the COVID-19 TR. Finally, the RA procedure incorporates a 
knowledge-based approach implementing several fuzzy rules defined by domain experts and 
information that has been retrieved from the literature. 

Το perform the RA of COVID-19 and norovirus transmission, the construction of a Mamdani fuzzy 
inference system is performed (Ahmad Shukri & Isa, 2021; Mamdani & Assilian, 1975): (a) the input 
entries are fuzzified based on the defined membership functions. The fuzzy sets are defined in such 
a way to overlap covering the range of values of each risk factor. (b) The determination of the 
relations among the risk factors and the output risk is then inferred based on ‘IF-THEN’ rules. As the 
number of rules increases, the result is better approximated and estimated. For the TR assessment 

Input Fuzzification
Evaluation and Aggregation

(Mamdani model)
Defuzzification Output

Knowledge-based System
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problem, the fuzzy rules are elicited and empirically selected by domain experts. (c) The activation 
of the fuzzy rules is performed, depending on the input entries and the logic operators; (d) the 
resulting output membership functions (𝑅௝) are aggregated and defuzzified, based on Eq. (1), 

resulting in a final crisp output.  

𝑅௝ (𝑥, 𝑦, 𝑧, 𝑤, 𝑞, 𝑝) = ⋁ (𝐴௜(𝑥) ∧ 𝐵௜(𝑦) ∧ 𝐶௜(𝑧) ∧ 𝐷௜(𝑤) ∧ 𝐸௜(𝑞) ∧ 𝐹௜(𝑝))௡
௜ୀଵ       (1) 

where “⋁” represents the fuzzy union and “∧” the fuzzy intersection operation. In addition, 𝑗 = 1, . . , 𝑅, 
where 𝑅 is the total number of activated fuzzy rules; the variables 𝑥, 𝑦, 𝑧, 𝑤, 𝑞 are the considered input 
risk factors, i.e., HVAC airflow, body temperature, number of coughs, number of passengers, time 
of exposure, respectively, whereas 𝑝 is the estimated TR. Each variable is defined by a 
corresponding fuzzy set 𝐴௜, 𝐵௜,𝐶௜, 𝐷௜, 𝐸௜, 𝐹௜, respectively, with 𝑖 = 1, … , 𝑛. Regarding the TR, the 
confidence value is defined as the degree of membership to the respective fuzzy set. 

The total risk of disease transmission is defined as the aggregated risk of all monitored 
environments. The calculation of the total risk (𝜌ఛ) for the pathogen transmission is performed based 
on the following equation (Xia et al., 2023): 

        𝑅ఛ =  ⨀ ௜ୀଵ
௉  𝑅௜                         (2) 

where 𝑃 corresponds to the total number of monitored environments, 𝑅௜ is the estimated risk for 𝑒௜, 
where ⊙  is an aggregation operator. The calculated 𝑅ఛ is fuzzified using the corresponding defined 
fuzzy sets. 

Table 6 Literature-based risk mitigation measures (suggested actuations). 

 

Once the risk assessment system defines a risk level related to the possibility of an epidemic 
outbreak, control measures are implemented based on the severity of the risk. These measures, in 
line with outbreak management guidelines and relevant studies, such as the research in 
(Triantafyllou, Kalozoumis, et al., 2024) and the SHIPSAN manual (SHIPSAN, 2016), include 
isolation and disinfection of affected areas, increased disinfection throughout the ship, and limiting 
the number of passengers in public areas. The recommended measures vary depending on the 
identified level of risk. The correspondence between the risk level and the risk mitigation measures, 

hereinafter suggested actuations is presented in Table 6, where actuations are suggested to limit 
the transmission of the disease. 
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 Simulation Module 

For the simulation module, several Agent-Based Models (ABMs) were utilized to assist the Decision-
Making Module in the RA process. Specifically for airborne disease transmission the ABM framework 
Vadere was utilized to perform airborne disease transmission simulation (Rahn et al., 2022). Due to 
limited available data on short-term airborne disease transmission, this ABM framework was also 
utilized to validate the generated fuzzy rule set described in the Decision-Making Module. Regarding 
waterborne disease transmission, a validated ABM tailored for assessing the risk of exposure for 
passengers inside a swimming pool was used (Pintar et al., 2010). This ABM was coupled with the 
Wells-Rilley model to provide additional feedback related to the risk of disease transmission. 
Similarly, for surface-based disease transmission a validated ABM was used to assess the risk of 
disease transmission coupled with a the Wells-Rilley model (Arav et al., 2021). 

 SIMULATION OF DISEASE SPREAD 

 Airborne Transmission Modeling  

Airborne disease transmission refers to the spread of infectious agents, such as viruses, through the 
air, and is considered the primary transmission mode for several infectious diseases (Zhao et al., 
2022). For example, the relative contribution rate of aerosol particles on the Diamond Princess cruise 
ship was assessed as the most dominant infection route for COVID-19 transmission (Azimi et al., 
2021). More specifically, airborne transmission primarily occurs in confined spaces when exhaled 
respiratory droplets remain suspended in the air and can be potentially inhaled by other individuals 
(Burridge et al., 2021). Therefore, the risk for infectious disease outbreaks in indoor spaces is 
generally higher, since the concentration of contaminants is more likely to increase, considering the 
factors of insufficient ventilation and confined prolonged human contact (Miller et al., 2021; Rowe et 
al., 2021).  

Notably, the quality of the HVAC system in an indoor setting is crucial for the spread of 
infectious diseases, since it regulates the movement and advection of any aerosols, pollutants, and 
carbon dioxide (CO2) (Wiryasaputra et al., 2022). Furthermore, (Baboli et al., 2021) reported that low 
humidity, low temperature, and a lack of air filtration constitute contributing factors to disease spread. 
Hence, measuring IAQ is crucial for determining whether the airflow of the HVAC system can 
mitigate the risk of airborne transmission (Kurabuchi et al., 2021). This can be achieved by 
implementing different strategies such as air filtration, ventilation control, humidity and temperature 
regulation, as well as monitoring of environmental parameters (Megahed & Ghoneim, 2021; Qian & 
Zheng, 2018). 

Although technical interventions can be employed to limit airborne transmission, modelling 
the dynamics of disease spread is essential for the development of effective prevention strategies 
(Hussain et al., 2022; Liu et al., 2021). Modelling the evaporation and dispersion of droplets is a 
challenging and complex task when considering the multiphase interactions and variability of airflow 
conditions in an indoor setting. In this regard, CFD models incorporate these elements of variation 
to simulate respiratory actions, such as coughing and sneezing, to assess their effect on disease 
spread. There have been several studies that utilize CFD modelling to provide detailed information 
of the spatial distribution of infectious aerosol particles indoors (Mohamadi & Fazeli, 2022; Motamedi 
et al., 2022; Tsang et al., 2022).  

For instance, a recent study investigated the transport, dispersion, and evaporation of saliva 
particles arising from a human cough (Dbouk & Drikakis, 2020a). More specifically, the proposed 
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methodology incorporated a three-dimensional model based on fully coupled Eulerian–Lagrangian 
techniques, that takes into account the relative humidity, turbulent dispersion forces, droplet phase-
change, evaporation, and breakup parameters. The study showed that when someone coughs, the 
wind speed in an open space environment significantly affects the distance airborne droplets travel. 
Other studies focus on assessing the effect of ventilation and face masks under various airflow 
settings, to further enhance our understanding of droplet dynamics in these conditions. These 
studies, for instance, utilize CFD models to simulate aerosol plume dynamics (Ho, 2021) or examine 
the fluid dynamics phenomena that affect face mask efficiency under a coughing incident (Dbouk & 
Drikakis, 2020b). Furthermore, there are recent studies in the literature that focus on simulating long-
range transport of infectious aerosols in ventilated indoor environments. One such example is 
explored by the authors in (Dbouk & Drikakis, 2021), where they investigated the impact of air 
ventilation systems and aerosols in an elevator under different airflow settings and found that the 
placement and design of the air purifier and ventilation systems significantly affect droplet dispersion. 
Additionally, other studies assess the possibility of airborne transmission in realistic indoor 
environments, for example, by measuring the ventilation rate in a restaurant using the tracer gas 
concentration decay method (Y. Li et al., 2021), or by investigating aerosol transport and surface 
deposition in a realistic classroom environment using computational fluid-particle dynamics 
simulations (Abuhegazy et al., 2020). In a similar regard, there are studies that aim to identify the 
transmission mechanisms of respiratory aerosols and assess strategies for risk mitigation aboard an 
enclosed bus environment (X. Yang et al., 2020; Z. Zhang, Han, et al., 2021). These studies combine 
experimental, numerical analysis and CDFs to simulate particle evaporation and transport. However, 
despite the potential usefulness of CFD models, one major challenge is their high computational cost 
and their limited capacity to capture the full complexity of a given system. Another simulation method 
is Lagrangian Particle Tracking (LPT), which has been used to track aerosol hazards in operating 
rooms (D’Alicandro et al., 2021). LPT methods can calculate particle trajectories and forces applied 
on them, such as gravity, buoyancy, drag, and inertia, that can alter their velocity and direction in the 
flow. LPT can adequately simulate the motion of a discrete number of particles, but it is considered 
computationally expensive. 

An alternative direction to monitor disease transmission through the airborne route is to 
employ ABMs to simulate the movement and behavior of individuals within a pre-defined 
computational environment (Reveil & Chen, 2022). Several studies have employed ABMs to 
investigate disease transmission and exposure risk in various indoor settings, such as airplane 
cabins (Löhner et al., 2021), fever clinics (J. Wang et al., 2022), subway stations (Löhner et al., 
2021), and restaurants (Löhner et al., 2022). Moreover, certain studies have specifically focused on 
developing ABMs for aerosol-based airborne transmission (Altamimi et al., 2021; Farthing & Lanzas, 
2021), while others address disease forecasting (Petropoulos et al., 2022). Notably, ABMs are 
considered computationally intensive and challenging to calibrate as they rely heavily on prior 
assumptions. 

CFD models can accurately approximate real-life scenarios of airborne transmission using 
equations related to airflow based on experimental studies (Zhao et al., 2022). Nevertheless, 
simulations of airborne diseases that can be transmitted through human-to-human interaction need 
to consider the human factor in order to assess the risk of epidemic outbreaks in social scenarios 
(Tsang et al., 2022). This results in scenarios where the CFD models are required to recalculate the 
airflow field to account for exposed or infected individuals and the spatial changes of the simulated 
space through time, which are affected by people movement. The need for recalculations leads to 
computationally expensive simulations that are impractical (Y. Guo et al., 2021). Therefore, in order 
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to mitigate this effect, researchers have proposed hybrid methods which incorporate probabilistic 
models and ABMs.  

Probabilistic-CFD approaches are usually employed to find the probability of infection of individuals 
based on dose-exposure models (La et al., 2021; Motamedi et al., 2022; Wan et al., 2009), the Wells-
Riley model (Y. Guo et al., 2021; Gupta et al., 2012; Qian et al., 2009; Yin et al., 2012; Z. Zhang, 
Capecelatro, et al., 2021), and other probabilistic models such as the Markov Chain Model (MCM) 
(C. Chen et al., 2014) or probability distribution functions (PDFs) (Tan et al., 2022). The effectiveness 
of such models has been presented in studies that compare CFD-based and probabilistic-CFD 
methods (J. Huang et al., 2021; Z. Zhang, Capecelatro, et al., 2021). Probabilistic-CFD models 
consist of two parts, i.e., the exposure equation that calculates the exposure dose of individuals 
based on the concentration of pathogens provided by CFD simulations and the infection probability 
equation, usually an exponential model, that estimates the probability of infection based on the 
calculated dose exposure and other infection-related parameters (Aliabadi et al., 2011). These 
infection-related parameters can either be determined based on previous research, e.g., 
experimental or CFD studies (Gupta et al., 2012), or by statistical analysis, e.g., maximum likelihood 
estimation or MCM (Cheng et al., 2022; La et al., 2021; Yin et al., 2012). Probabilistic models such 
as the Wells-Riley model assume that the pathogen concentration is uniformly distributed, which is 
less accurate in realistic scenarios (Mukherjee & Wadhwa, 2022). In (Tan et al., 2022), the use of a 
PDF was proposed as a solution to this problem. More specifically, the parameters of the PDF, e.g., 
mean and standard deviation of pathogen concentration, were determined by statistically analyzing 
174 high-resolution CFD simulations. Such probabilistic methodologies mostly focus on predicting 
infected individuals without considering social factors and spatial changes of the environment. A 
solution to this problem has been proposed in (Y. Guo et al., 2021), where a spatial flow impact 
factor was incorporated in the Wells-Riley model to account for spatial changes. Furthermore, this 
approach could be used for minimizing the overall infection rate at a specific location by optimizing 
the location distribution of population and facilities.  

ABM-CFD approaches introduce motion mechanisms, thus providing more realistic 
simulations of airborne disease transmission scenarios (Harweg et al., 2023; Mukherjee & Wadhwa, 
2022). These methods utilize CFD simulations to predict the airflow field, such as droplet distribution 
and then incorporate the inferred pathogen concentration to the ABM that predicts infected and 
exposed human agents based on deterministic, probabilistic, or epidemiologic dynamics (Harweg et 
al., 2023; Lazebnik & Alexi, 2023; Mukherjee & Wadhwa, 2022; Schinko et al., 2022; J. Wang et al., 
2022). Approaches considering a deterministic disease transmission model consider an infection 
occurrence based on thresholds determined by experimental studies or relevant literature (Löhner 
et al., 2022; Mukherjee & Wadhwa, 2022). Non-deterministic approaches either utilize probabilistic 
infection models, such as the dose-exposure model (J. Wang et al., 2022), or epidemiological 
models, such as the Susceptible-Infected-Removed and Susceptible-Exposed-Infected models 
(Ghoroghi et al., 2022; Lazebnik & Alexi, 2023). Based on the newly infected population, the ABM 
model updates the infection status and location of the population, which are then used as boundary 
conditions for the next time step of the CFD simulation (Ghoroghi et al., 2022; Mukherjee & Wadhwa, 
2022; Schinko et al., 2022; J. Wang et al., 2022). ABM methods that incorporate social features that 
occur in real-life scenarios, such as contact avoidance of agents, employ the Social Force Model 
(SFM) (Harweg et al., 2023) which has been reported to provide high-fidelity simulation results 
(Marlow et al., 2021). Similar methods utilize computational crowd dynamics (CCD) models (Löhner 
et al., 2022), discrete event simulation (DES) models (Ghoroghi et al., 2022), and clustering methods 
(Schinko et al., 2022) to simulate spatio-temporal changes in the system. Moreover, some 
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methodologies incorporate more sophisticated mechanisms in the ABM simulation, such as 
coughing, use of protective equipment, hand hygiene, vaccination, and different ventilation 
techniques (Ghoroghi et al., 2022). In addition, several studies combine airflow parameters, e.g., 
airflow velocity, and agent related variables, e.g., height, face orientation, and inhalation/exhalation 
cycle (Lazebnik & Alexi, 2023; Mukherjee & Wadhwa, 2022). In (Lazebnik & Alexi, 2023), the impact 
of agent movement in the airflow field of the simulation is considered by incorporating a wake model, 
namely the Actuator Line Model (ALM), in the simulation. 

ABMs can be simulated on 2D or 3D mesh grids. ABMs based on a 3D grid system can 
provide more fine-grained simulations that can result in more realistic results (Lazebnik & Alexi, 
2023; Marlow et al., 2021); nevertheless, they can become computationally expensive (Mukherjee 
& Wadhwa, 2022). In contrast, an ABM simulation based on a 2D grid mesh could be more 
computationally efficient but may compromise the fidelity of the simulation due to interpolation of 
data from a 3D to 2D mesh grid system. In (Löhner et al., 2022), a hybrid method was adopted which 
utilized a CCD model based on a 2D-background mesh grid and a CFD model based on a 3D mesh 
grid to simulate pedestrian motion. The translation from 3D to 2D and vice versa was achieved by 
utilizing interpolation coefficients that were computed at the start of the coupled simulation.  

Hybrid methods often utilize an Eulerian-based CFD or a Lattice-Boltzmann (LB)-based 
model to calculate the airflow and other analytical methods to find the trajectory and dispersion of 
droplets (Tsang et al., 2022). More recently, an LB-based method using a Large Eddy Simulation 
(LES) model was combined with an SFM-based ABM to simulate pathogen dispersion in evacuation 
scenarios (Marlow et al., 2021). In (Mukherjee & Wadhwa, 2022), a semi-analytical approach utilized 
a set of coupled ordinary differential equations (ODEs) to simulate the dynamics of droplets as a 
function of the airflow. In additional, mechanics involving exposure to pathogens take into 
consideration short- and long-range airborne routes (Cheng et al., 2022), as well as direct inhalation 
of coarse droplets and direct deposition of medium droplets on facial membranes (J. Wang et al., 
2022). Another parameter that is considered in hybrid methods is the size range of droplets, since it 
affects the possibility of infection. Studies often define an interval-based size range (La et al., 2021; 
Motamedi et al., 2022; Schinko et al., 2022) or a discrete set of size ranges (Cheng et al., 2022; Wan 
et al., 2009; Yin et al., 2012), while others focus on one type of droplet size (Qian et al., 2009). In 
addition, methods that study droplet deposition on surfaces could incorporate surface disease 
transmission mechanics to provide a more realistic disease transmission model (Cheng et al., 2022). 
A hybrid method could also incorporate variations of coupled long-range, close-contact and surface 
dose exposure mechanisms in a dose-response model to predict risk of infection and disease 
transmission. Long-range airborne transmission could be calculated based on CFD simulations or 
the multi-zone infiltration and exfiltration model (MIX) and fomite transmission based on discrete‐

time non‐homogeneous MCM. Furthermore, dose exposure related to close-contact interaction 
depends on short-range airborne transmission, direct deposition of large droplets on mucous 
membranes and inhalation of droplets based on the normal distribution model (S. Xiao et al., 2017). 

In summary, the methods used to model airborne disease transmission comprise numerical 
physical models, mechanistic models, ABMs, or any combination of them. The novelty regarding the 
methods mostly focuses on the case study (e.g., COVID-19 transmission in buildings) and the 
parameters regarded in the models (e.g., ventilation incorporated, specific droplet size, use of motion 
mechanics in ABM, different SFM parameters considered).  
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 Waterborne Transmission Modelling 

Waterborne transmission refers to the acquisition of disease by exposure to pathogens through 
contaminated drinking water, recreational water (e.g., pools), bathing, washing, or eating food 
exposed to contaminated water, and overall lack of clean water supply, sanitation, and hygiene. 
Water can become contaminated at the source, during transport to the storage facility, in storage 
containers, or via improper handling. Several studies have attempted to model waterborne 
transmission, and it has been shown that, apart from the direct introduction of pathogens into the 
body, i.e., drinking water and eating contaminated food, waterborne transmission takes place 
through aerosols containing contaminated water particles of different sizes (Ali et al., 2021; Hamilton 
& Haas, 2016; Y. Li et al., 2020; Mari et al., 2019; Pintar et al., 2010; L. Zhang et al., 2016). 

It has been reported that stack aerosols are generated within vertical building drainage stacks 
during the discharge of wastewater containing fecal matter and exhaled mucus from toilets and 
washbasins. Experimental measurements regarding the stack air pressure and temperature 
distributions indicated that stack aerosols can spread to indoors through pipe leaks, providing direct 
evidence for the long-range aerosol transmission of COVID-19 through drainage pipes via the 
chimney effect (Q. Wang et al., 2022). Another study reviewed the transmission of COVID-19 
through aerosolized wastewater and aerosols generated by toilet flushing (Ali et al., 2021). In (Y. Li 
et al., 2020), the VOF method was employed to simulate different flushing processes and the VOF–
DPM method was used to model the trajectories of aerosol particles during flushing. The simulation 
results indicated the massive upward transport of virus particles, with 40%–60% of particles being 
transported above the toilet seat, leading to large-scale virus spread. The VOF-DPM was also 
employed in to investigate the transmission of infectious diseases in restrooms during male urination. 
The results revealed that male urination can induce strong turbulent flow with an average urine 
impinging velocity of 2.3 m/s, which can agitate virus particles and raise them (Cao et al., 2022). A 
similar study was conducted regarding virus transmission from urinals. It was reported that the 
trajectory of the particles generated by urinal flushing exhibited an outward spreading mode, 
reaching a height of 0.84 m within 5.5 s (J.-X. Wang et al., 2020). In (J.-X. Wang et al., 2022), CFD 
and DPM were used to quantitatively and visually demonstrate the effects of ventilation airflow 
speed, fan locations, and fan size on virus aerosol distribution due to toilet flushing in a typical family 
bathroom. They reported that the traditional ceiling fan was barely functional since aerosol particles 
were not adequately removed, while the side-wall fan functioned more efficiently, and its ventilation 
capability and performance were significantly better, removing nearly 80.9% of the lifted aerosol 
particles. Putting the toilet lid down before flushing is an effective method to prevent virus 
transmission. Nonetheless, male urinals do not have a lid or other barriers and people do not always 
have the habit of putting the toilet lid down before flushing to prevent aerosol cloud generation. In (L. 
Zhang et al., 2016), both direct and indirect transmission pathways were incorporated into a 
reaction–diffusion waterborne pathogen model, considering the spatial heterogeneity and the 
mobility of host population and flowing water on a spatial continuous and bounded domain.  

Mathematical modelling has also been utilized to estimate the risk of infection based on 
simulations of water-mediated pathogen transportation in water distribution systems. Waterborne 
disease transmission scenarios have been explored, calculating the probability of infection based on 
dose-response models or deterministic infection mechanisms (Hamilton & Haas, 2016; Heida et al., 
2022). In (Mari et al., 2019), a spatially explicit network model was utilized to simulate short-term 
pathogen transport throughout communities. The network model contains nodes that represent 
human communities that are arranged in a spatial setting and are connected through hydraulic 
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pathways. The evolution of pathogen transportation is monitored by an ODE epidemiological system 
that is affected by the population size (susceptible and infected individuals), pathogen concentration 
in the water supply, and human mobility. In (Chaysiri et al., 2021), the impact of water and sanitation 
services on waterborne disease transmission was investigated. A variation of the SIR model was 
introduced to simulate a cholera outbreak in Haiti. The so-called susceptible–infected–water–
dumpsite–recovered (SIWDR) model incorporated the impact of open dumpsites as pathogen 
concentration sites and deficits of water sanitation services in the SIR ODE system. The affected 
water systems included were the drinking water supply system and the wastewater and sewage 
system. For the dumpsite-related parameter, deficits in municipal solid waste management and other 
non-water-related pathogen concentration sites were also considered in the model. In this model, 
the infectious population affected the number of concentrated pathogens in the dumpsite-related 
ODE, as well as in the water-related ODE. The dumpsite-related ODE also affected the water-related 
one, and both subsequently affected the number of newly infected population.  

 Surface Transmission Modelling 

Surface transmission, also known as fomite-mediated transmission, occurs when susceptible 
individuals come into contact with surfaces that have been contaminated by infected individuals 
through direct touching, direct deposition of respiratory droplets, and/or deposition of respiratory 
aerosols under different conditions (Azimi et al., 2021). Numerical simulations have been conducted 
regarding the virus deposition on surfaces via aerosol/droplet transport due to inhalation or coughing 
under different scenarios (Sen, 2021; Vuorinen et al., 2020). However, the transmission modelling 
from contaminated surfaces to humans has been mainly focused on mechanistic or stochastic 
models. In (Canales et al., 2019), the contribution of fomite-mediated exposure to infection and 
illness risks during outbreaks was estimated. In particular, a stochastic simulation model in discrete 
time was developed to predict 17 h of simulated human behavior, taking into consideration hand-to-
porous surfaces, hand-to-nonporous surfaces, hand-to-mouth, -eyes, -nose, as well as hand 
washing events. In another study (Pitol & Julian, 2021), two mechanistic models of indirect 
transmission within the quantitative microbial RA (QMRA) framework were adopted to estimate the 
infection risk for COVID-19 in community settings and provide guidance on potential intervention 
strategies. More specifically, the first model was used to estimate the infection risk for single contacts 
with contaminated surfaces; the SARS-CoV-2 RNA concentration on surfaces was obtained from 
the literature and concerned surface contamination in public spaces, e.g., bus stations, gas stations, 
stores, and playgrounds. The second model was used to estimate risks from surface-mediated 
community transmission as a function of the prevalence of COVID-19 cases in the community and 
assess the efficacy of feasible intervention strategies of hand and surface disinfection. In (Wilson et 
al., 2020), the transmission of pathogens from surfaces to fingertips was examined as an alternative 
way to simulate fomite-mediated transmission. The potential magnitude of exposure from surfaces 
to fingertips was calculated based on a mechanistic model. More specifically, the model calculated 
the pathogen concentration on the fingertips after contact with a contaminated surface based on the 
pathogen concentration of the surface before the contact, the pathogen concentration of the 
fingertips after the contact, and the transfer efficiency of the pathogen. The concentration-related 
parameters were calculated based on experimental data and statistically adjusted to account for the 
swabbing efficiency in the experimental study. In (Lei et al., 2018), comparative analyses on the 
routes of transmission of influenza A (H1N1), SARS CoV, and norovirus in an air cabin were 
conducted. A review on the mathematical modelling of fomite-mediated transmission, factors that 
affect transmission of microbes between fomites and humans, and the implications for human health 
can be found in (Stephens et al., 2019). 
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Fomite-mediated transmission has also been simulated using mathematical models such as 
the Environmental Infection Transmission System (EITS) framework. The EITS is a compartmental 
model that incorporates live pathogens of the environment as a parameter in the SIR model. It was 
proposed in (S. Li et al., 2009), where the epidemiological dynamics of the EITS are described by 
an ODE system that is affected from the traditional transition rates of infection and recovery, as well 
as environmental related probabilities such as fraction of pathogens picked by a susceptible person, 
probability of infection based on pathogens picked, number of pathogens deposited to environment 
per unit of time and rate at which pathogens are eliminated from the environment. The dynamics of 
the model can be simulated in a deterministic or a stochastic way, where events (e.g., a susceptible 
becomes infected) happen simultaneously and continuously or a single event randomly occurs in 
each case respectively. An extension of the EITS was proposed in (Kraay et al., 2018), where a 
model combined hand contamination due to fomite touching and infection based on self-inoculation, 
i.e., infection due to contaminated hands touching the mouth or other membranes. 

 SIMULATION-BASED ANALYSIS OF INFECTION 
TRANSMISSION 

 Analysis and Modelling of Accessible Areas 

The implementation of the proposed system was divided into several modules. The closed-loop 
system was represented by an object-oriented ship structure that encompassed the RA node that 
comprised Sensors, Data Analysis, Decision-Making, and Simulation Modules. These can be 
observed in Figure 23, where a Unified Modelling Language (UML) diagram of the ship is presented. 
Each compartment of the ship contains information that can be used by the RA node, such as a 
passenger and furniture list, and are implemented as classes in Python.  

 

Figure 23: The implemented object-oriented ship structure scheme. 

 Simulation Platforms 

There are several simulation platforms that can be used for modelling the transmission mechanics 
of infectious diseases in indoor and outdoor spaces that also incorporate human interactions. The 
identified simulation methods would require the use of CFD-related and agent-based modelling. The 
simulation software utilized in such a multi-simulation module should also be configurable to 
encompass mechanistic or probabilistic models. Several such tools have been examined and 
presented in this subsection, namely PyNetLogo, MESA and Vadere. PyNetLogo and MESA were 
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selected based on the review provided in (Antelmi et al., 2022) and Vadere due to the related study 
on airborne transmission provided in (Rahn et al., 2022). 

PyNetLogo is interface to use and access NetLogo (Wilensky 1999) from Python. One can 
interact with NetLogo in either headless (no GUI) or interactive GUI mode. The library provides 
functions to load models, execute commands, and get values from reporters. It is compatible with 
NetLogo 6.1 and newer. It is largely similar to the NetLogo Mathematica Link and RNetLogo 
(deprecated). NetLogo is a multi-agent programmable modelling environment. It is used by many 
hundreds of thousands of students, teachers, and researchers worldwide. It also powers HubNet 
participatory simulations. It is authored by Uri Wilensky and developed at the CCL. You can 
download it free of charge. You can also try it online through NetLogo Web. NetLogo allows modelers 
to develop their models through a simple-to-use dedicated modelling language while offering a VPL 
to create and edit components to realize any simulation. However, its accessibility leads to significant 
limitations regarding model complexity. (link) (Antelmi et al., 2022) 

Features 

● Tools for analysis with extension  

● Random number generator with extension 

● Batch-runner with extension 

● Visualization in 2D and 3D 

● Parallel and distributed simulation with extension 

● Grid, continuous, network, Geographic Information Systems (GIS) with extension 

● Model exploration and optimization with BehaviourSpace. BehaviorSpace is a software tool 
integrated with NetLogo that allows you to perform experiments with models. BehaviorSpace 
runs a model many times, systematically varying the model’s settings and recording the 
results of each model run. This process is sometimes called “parameter sweeping”. It lets 
you explore the model’s “space” of possible behaviors and determine which combinations of 
settings cause the behaviors of interest. If your computer has multiple processor cores, then 
by default, model runs will happen in parallel, one per core. (link) 

MESA is an Apache2 licensed agent-based modelling (or ABM) framework in Python (Kazil et 
al., 2020). Mesa allows users to quickly create agent-based models using built-in core components 
(such as spatial grids and agent schedulers) or customized implementations; visualize them using a 
browser-based interface; and analyze their results using Python’s data analysis tools. Its goal is to 
be the Python 3-based counterpart to NetLogo, Repast, or MASON. One of the main advantages of 
Mesa is its extensibility, allowing users to develop and share their components through an open-
source ecosystem. This approach created a rich community providing extensions for any need, 
including the possibility to exploit a multi-processor system, support for GIS data, and advanced 
analysis (Antelmi et al., 2022). 

 

Features 



D3.2 –  R isk  assessment  methodo log ies ,  models  and a lgor i thms  
Vers ion 2 .0  –  Date 10.03.2025  
 

  

 

Page 58 

 

● Modular components 

● Browser-based visualization 

● Built-in tools for analysis 

● Random number generator 

● Batch-runner 

● Visualization in 2D and 3D 

● Parallel and distributed simulation 

● Grid, continuous, network, Geographic Information Systems (GIS) with Mesa-Geo 

● Model exploration and optimization  

Vadere is an open-source simulation framework to promote interdisciplinary understanding 
(Kleinmeier et al., 2019). Pedestrian dynamics is an interdisciplinary field of research. Psychologists, 
sociologists, traffic engineers, physicists, mathematicians, and computer scientists all strive to 
understand the dynamics of a moving crowd. In principle, computer simulations offer means to 
further this understanding. Yet, unlike for many classic dynamical systems in physics, there is no 
universally accepted locomotion model for crowd dynamics. On the contrary, a multitude of 
approaches, with very different characteristics, compete. Often only the experts in one special model 
type are able to assess the consequences these characteristics have on a simulation study. 
Therefore, scientists from all disciplines who wish to use simulations to analyze pedestrian dynamics 
need a tool to compare competing approaches. Developers, too, would profit from an easy way to 
get insight into an alternative modelling ansatz. Vadere meets this interdisciplinary demand by 
offering an open-source simulation framework implemented in Java, that is lightweight in its 
approach and in its user interface while offering pre-implemented versions of the most widely spread 
models. 

Features 

 Modular components 
 Implemented various useful features such as behavioral, airborne transmission, dose 

exposure models and topographic elements  
 Graphical User Interface 
 Visualization in 2D 
 Relies on target-based movements of agents for simulations 
 Needs implementation for custom simulation settings 

Agent-based modelling can be employed as a preliminary simulation method for the 
Simulation Module. The Snapshots of example simulation cases generated from Vadere are 
illustrated in Figure 24. In detail, one or two infectious passengers (infectious agents) in red are 
placed in a room with healthy passengers (healthy agents) in blue. They move with a set breathing 
and coughing cycle. While the infectious agents move, they release an aerosol cloud of fixed radius 
and pathogen load. The healthy agents are being exposed to the pathogen load when they move in 
the areas that the aerosol clouds were released. These healthy agents accumulate pathogen 
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exposure that can be then used to calculate the risk of infection. Then, the number of the newly 
infected agents can be used to assess the risk of disease spread. Agent-based modelling software 
can also be used to visualize the simulated scenarios by importing the information provided in the 
ship classes of Figure 23. 

 

 

Figure 24: Two simulated scenarios of disease spread in a cabin and eating room. Infected agents with red, 
health with blue. 

 SIMULATED SCENARIOS 

As part of the experiments conducted in this study, several scenarios of disease transmission were 
simulated considering the ship schematics of ships (Figures 1-6), identified sensors and information 
that can be obtained from theses sensors (Table 1), schematics of the air-filtration and ventilation 
system, (10-12), as well as schematics of the sewage system (Figures 13-17). To assess disease 
transmission dynamics for viruses such as COVID-19 and norovirus and to evaluate our method, we 
simulated scenarios in specific areas of the ship that were selected based on empirical data from 
the literature (Figures 8 & 9) and insights from partners of the project (Figure 7). These included 
indoor areas, such as eating areas, bars and cabins, as well as outdoor areas such as swimming 
pools. The impact of the sanitation systems on waterborne disease spread were not examined since 
these systems provide adequate safeguards to prevent waterborne disease spread. 

 Eating Area 

Monitoring: An audio sensor in an eating area receives/does not receive symptom sounds, such 
as coughing. A thermal camera sensor senses the elevated temperature of one or more individuals. 
A DNA/RNA sensor located in the HVAC system in the same area detects and identifies a pathogen. 
The number of passengers in the area is also tracked by an RFID sensor. The ship’s information 
system sends data about the vaccination status in the eating area, based on the passenger’s key 
card detected by the RFID sensor upon entrance. The information obtained from each of these 
sensors can be processed independently or combined. 

Data Analysis: The data analysis block receives information from the sensors and translates it into 
relevant semantics.  

Decision Making: Infer infection risk level based on the results of the data analysis and the domain 
knowledge encoded into the decision making (DM) module.  

If enough information is available for DM to infer and the confidence interval is sufficient, then inform 
crew members of the risk level.  
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If the confidence interval is insufficient, then the system does not have enough information. In this 
case, run simulations to gather more information about possible spreading scenarios of the disease 
in the ship compartment. 

Simulations: Run simulations based on physical and/or epidemiological models 

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol 
suspension time in the air and the droplet deposition on surfaces. Preventive measures, such as the 
effect of masks, can also be considered. 

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.  

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk 
of infection for individuals in the room. 

All acquired information is fed back to the decision-making module to reassess the risk level with a 
sufficient confidence interval. 

 

 Vessel’s other high-risk public spaces 

Monitoring: An audio sensor in a high-risk public space, e.g., bar (Figure 7), receives/does not 
receive symptom sounds, such as coughing. A thermal camera sensor senses the elevated 
temperature of one or more individuals. A DNA/RNA sensor located in the HVAC system in the 
same area detects and identifies a pathogen. The number of passengers in the area is also tracked 
by an RFID sensor. The ship’s information system sends data about the vaccination status of 
passengers, based on the passenger’s key card detected by the RFID sensor upon entrance. The 
information obtained from each of these sensors can be processed independently or combined. 

Data Analysis: The data analysis block receives information from the sensors and translates it into 
relevant semantics.  

Decision Making: Infer infection risk level based on the results of the data analysis and the domain 
knowledge encoded into the decision making (DM) module.  

If enough information is available for DM to infer and the confidence interval is sufficient, then inform 
crew members of the risk level.  

If the confidence interval is insufficient, then the system does not have enough information. In this 
case, run simulations to gather more information about possible spreading scenarios of the disease 
in the ship compartment. 

Simulations: Run simulations based on physical and/or epidemiological models. For example, 

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol 
suspension time in the air and/or the droplet deposition on surfaces. Preventive measures, such as 
the effect of masks, can also be considered. 

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.  

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk 
of infection for individuals in the room. 

All acquired information is fed back to the decision-making module to reassess the risk level with a 
sufficient confidence interval. 
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 Vessel’s low-risk public spaces 

Monitoring: An audio sensor in a low-risk public space, e.g., lounge area (Figures 7 & 8), 
receives/does not receive symptom sounds, such as coughing. A thermal camera sensor senses 
the elevated temperature of one or more individuals. A DNA/RNA sensor located in the HVAC 
system in the same area detects and identifies a pathogen. The number of passengers in the area 
is also tracked by an RFID sensor. The ship’s information system sends data about the 
vaccination status of passengers, based on the passenger’s key card detected by the RFID sensor 
upon entrance. The information obtained from each of these sensors can be processed 
independently or combined. 

Data Analysis: Data Analysis: The data analysis block receives information from the sensors and 
translates it into relevant semantics. 

Decision Making: Infer infection risk level based on the results of the data analysis and the domain 
knowledge encoded into the decision making (DM) module.  

If enough information is available for DM to infer and the confidence interval is sufficient, then inform 
crew members of the risk level.  

If the confidence interval is insufficient, then the system does not have enough information. In this 
case, run simulations to gather more information about possible spreading scenarios of the disease 
in the ship compartment. 

Simulations: Run simulations based on physical and/or epidemiological models. For example, 

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol 
suspension time in the air and/or the droplet deposition on surfaces. Preventive measures, such as 
the effect of masks, can also be considered. 

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.  

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk 
of infection for individuals in the room. 

All acquired information is fed back to the decision-making module to reassess the risk level with a 
sufficient confidence interval. 

 

 Public Swimming Pool  

Monitoring: An audio sensor in the public swimming pool area receives symptom sounds, such as 
coughing or sneezing of symptomatic cases. A thermal camera sensor senses the elevated 
temperature of one or more individuals. A DNA/RNA sensor located in the swimming pool detects 
and identifies a pathogen. A chlorine sensor evaluates whether the chlorine levels in the swimming 
pool are sufficient to mitigate the risk of infection and the spread of the disease. The number of 
passengers may also be tracked by a sensor (an RFID sensor calculating how many passengers 
enter the swimming pool area using their key cards). The ship’s information system sends 
information about the population demographics in the swimming pool area, based on the 
passenger’s key card detected by the RFID sensor upon entrance. The information obtained from 
each of these sensors can be processed independently or combined. 
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Data Analysis: The data analysis block receives information from the sensors and translates it into 
relevant semantics.  

Decision Making: Infer infection risk level based on the results of the data analysis and the domain 
knowledge encoded into the decision-making (DM) module. 

If enough information is available for DM to infer and the confidence interval is high, then inform crew 
members of the risk level.  

If the confidence interval is low, then the system does not have enough information. In this case, run 
simulations to gather more information about possible spreading scenarios of the disease in the ship 
compartment. 

Simulations: Run simulations based on stochastic models. For example, 

Probabilistic models for pathogen transmission in water are utilized to estimate the number of 
infected individuals in the swimming pool. 

All acquired information is fed back to the decision-making module to reassess the risk level with a 
sufficient confidence interval. 

  Public toilet 

Monitoring: An audio sensor in a public toilet area receives/does not receive symptom sounds, such 
as coughing or sneezing of symptomatic cases. A thermal camera sensor senses the elevated 
temperature of one or more individuals. A DNA/RNA sensor located in the HVAC system in the 

same area detects and identifies a pathogen. A DNA/RNA sensor located in the blackwater 
pipeline system of the ship within the same area detects and identifies a pathogen. The 
number of passengers may also be tracked by a sensor (an RFID sensor if the toilet door opens only 
by the passenger key card). The ship’s information system sends data about the vaccination 
status of passengers, based on the passenger’s key card detected by the RFID sensor upon 
entrance. The information obtained from each of these sensors can be processed independently or 
combined. 

Data Analysis: The data analysis block receives information from the sensors and translates it into 
relevant semantics.  

Decision Making: Infer infection risk level based on the results of the data analysis and the domain 
knowledge encoded into the decision-making (DM) module. 

If enough information is available for DM to infer and the confidence interval is high, then inform crew 
members of the risk level.  

If the confidence interval is low, then the system does not have enough information. Then run 
simulations to gather more information about possible spreading scenarios of the disease in the ship 
compartment. 

Simulations: Run simulations based on physical and/or epidemiological models. For example, 
Computational Fluid Dynamics/Particle Tracking simulations are utilized to provide information about 
droplet deposition on the surfaces of the area. Preventive measures, such as the effect of masks, 
may also be considered. 

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.  
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Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk 
of infection for individuals in the room. 

All acquired information is fed back to the decision-making module to reassess risk level with a 
sufficient confidence interval. 

  Ship Cabin 

Monitoring: An audio sensor in a ship cabin receives/does not receive symptom sounds, such as 
coughing or sneezing of symptomatic cases. A thermal camera sensor senses the elevated 
temperature of one or more individuals. A DNA/RNA sensor located in the HVAC system in the 
same area detects and identifies a pathogen. A DNA /RNA sensor located in the blackwater pipeline 
system of the ship within the same area detects and identifies a pathogen. The number of 
passengers in the area is also tracked by an RFID sensor. The ship’s information system sends 
data about the vaccination status of passengers, based on the passenger’s key card detected by the 
RFID sensor upon entrance. The information obtained from each of these sensors can be processed 
independently or combined. 

Data Analysis: The data analysis block receives information from the sensors and translates it into 
relevant semantics.  

Decision Making: Infer infection risk level based on the results of the data analysis and the domain 
knowledge encoded into the decision making (DM) module. 

If enough information is available for DM to infer and the confidence interval is high, then inform crew 
members of the risk level.  

If the confidence interval is low, then the system does not have enough information. Then run 
simulations to gather more information about possible spreading scenarios of the disease in the ship 
compartment. 

Simulations: Run simulations based on physical and/or epidemiological models. For example, 

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol 
suspension time in the air and the droplet deposition on surfaces. Preventive measures, such as the 
effect of masks, may also be considered. 

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission. 

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk 
of infection for individuals in the room. 

All acquired information is fed back to the decision-making module to reassess the risk level with a 
sufficient confidence interval. 

 Computational modelling, simulation, analysis, 

and assessment 

The biomedical RA model proposed in Section 3 can benefit from computational modelling and 
simulations. These simulations can approximate real-life scenarios of pathogen transmission based 
on in-vivo experiments. The effect of the HVAC system on disease transmission has been 
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extensively studied as it is considered an important countermeasure against airborne disease 
transmission, e.g., COVID-19. For this project, several CFD simulation experiments were conducted 
by the partner of the project UNIC aimed at assessing the risk of airborne disease transmission 
based on droplet dispersion expelled through coughing (Ritos et al., 2023, 2024). These experiments 
examined the effect of the HVAC system’s airflow rate on the dispersion of droplets in enclosed 
areas of the cruise ship. CFD simulations can often become computationally expensive as the 
complexity of the problem increases. Therefore, machine learning approaches can accelerate the 
simulation process by acting as surrogate models of CFD simulations. Subsequently, an 
unsupervised machine learning algorithm was developed and experiments were conducted by the 
partner of the project UNIC to predict droplet dispersion in enclosed spaces of a cruise ship 
(Christakis & Drikakis, 2023a, 2023b; Christakis et al., 2024).  

 Computational Fluid Dynamics for airborne pathogen 
transmission 

Virus outbreaks on cruise ships present significant challenges due to their enclosed environment 
and high passenger density. Managing these outbreaks has become even more critical as cruise 
ships have increased in size and passenger capacity. In (Ritos et al., 2023), effects of ventilation 
rates and positions of the coughing person in a typical passenger cabin room onboard a cruise ship 
were investigated. 

 

Figure 25: Illustration of a typical passenger cabin room onboard a cruise ship, illustrating the scenario and 
test case configuration considered. 

The study also emphasized the importance of including evaporation models to simulate the process 
accurately. A higher ventilation rate is not always the best strategy to avoid the spread of airborne 
diseases, as saliva droplets can spread further at high ventilation rates. Regardless of the ventilation 
strategy, they evaporate faster than the room's air renewal. One should aim for minimum droplet 
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spreading inside the cabin and different ventilation strategies for occupied cabins. The authors 
propose using ventilation systems at medium flow rates of around 3 air changes per hour (ACH) 
when a cabin is occupied. This value is also close to the recommended value of 108 m3/h from the 
latest standard by the American Society of Heating, Refrigerating and Air-Conditioning Engineers 
(ASHRAE). The suggested value minimizes droplet spreading while maintaining good ventilation, 
comfort, and energy consumption. 

 In (Ritos et al., 2024), the effects of ventilation strategies on mitigating airborne virus 
transmission in a generic indoor space representative of a lobby area or information desk found in a 
hotel, company, or cruise ship were examined. Multiphase CFD simulations were employed in 
conjunction with evaporation modelling. Similar to the cabin experiments, four different ventilation 
flow rates were examined based on the most updated post-COVID-19 pandemic standards from 
health organizations and recent findings from research studies. Three air changes per hour provided 
the best option for minimizing droplet spreading at reasonable energy efficiency. Given the results 
presented in this study, excessively high flow rates, over 5 ACH, can have the opposite effect, 
leading to higher droplet spreading and high energy costs and adding probable discomfort to the 
occupants. Ventilation strategies like those proposed by WHO lead to results close to those observed 
with the best flow rate of 3 ACH tested in this study. Higher flow rate strategies, like those proposed 
by the recent ASHRAE Standard (ASHRAE, 2023) and Centers for Disease Control and Prevention 
(CDC) (Disease Controls (CDC), 2023), do not offer any advantage in this case and also create 
higher droplet scattering. Thus, a higher ventilation rate is not the best solution to avoid spreading 
airborne diseases. Simultaneous coughing of all occupants revealed that contagious droplets could 
be trapped in regions of low airflow and on furniture, significantly prolonging their evaporation time. 
Moreover, multiphase flow simulations can help define ventilation standards to reduce droplet 
spreading and mitigate virus transmission while maintaining adequate ventilation with lower energy 
consumption.  

Recently, a CFD study was carried out to investigate the dispersion of airborne respiratory droplets 
and aerosols within a cruise ship passenger cabin, focusing on the influence of mechanical 
ventilation jet flow angles, as the figure below shows: 

 

Figure 26: Sketch illustrating the inflow angle of the cooled air from the a/c unit considered in the present study: 
(a) 45- and (b) 75-degree angle. Contour surface plot of the air velocity magnitude. Red color indicates the 
maximum velocity of the air expelled by the a/c unit (1.14 m/s or 11 ACH). 

While previous research primarily concentrated on larger respiratory droplets, which rapidly settle, 
this study emphasizes aerosols under 10 μm that can remain airborne for extended periods. The 
findings demonstrate that slight variations in airflow can significantly impact aerosol dispersion. The 
research suggests that lower ventilation rates might be beneficial in minimizing the spread of 
microdroplets and aerosols. Additionally, a 75-degree inlet angle of the ventilation system effectively 
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restricts the travel distance of larger droplets. However, a 45-degree angle may offer better outcomes 
when a cough occurs near the ventilation unit. These insights underline the importance of tailored 
air circulation strategies to reduce transmission risks in confined spaces, such as cruise ship cabins, 
highlighting the need for optimized ventilation design to manage infectious disease outbreaks. 

 

Figure 27: Time plot of the total saliva mass of the airborne respiratory droplets located 1.4 m above the floor, 
grouped into separate size ranges depending on the diameter of the droplets, for (a) 45- and (b) 75-degree 
a/c inlets angle. 

The effect of natural ventilation on the distribution of airborne pathogens in narrow, typical corridor 
onboard cruise ships has also been investigated. Two scenarios are examined: a milder cough at 6 
m/s and a stronger cough at 12 m/s. A reference baseline case with no airflow is compared to cases 
featuring an incoming airflow velocity of 1 m/s (3.6 km/h), examining differences in the dispersal of 
respiratory droplets from two individuals coughing spaced 5 m apart, as per the figure below: 

 

Figure 28: Sketch illustrating a typical corridor on a cruise ship outside passenger cabin rooms, showcasing 
the dimensions of the computational domain and the position of the two coughs. 
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Both individuals cough in the direction of the airflow, assuming one-way traffic to minimize airborne 
pathogen transmission. Findings indicate that airflow accelerates past the door, exceeding 3 m/s, 
with gusts reaching 4 m/s due to interaction with recirculation zones. This acceleration affects droplet 
dispersal. Larger droplets (>150 μm) maintain a ballistic trajectory, traveling 2-4 m, potentially 
increasing transmission risk but suggesting that a 5-metre distancing policy could suffice for 
protection. Smaller droplets (<150 μm), especially those <100 μm, spread extensively regardless of 
cough strength while containing the most viral mass overall, as is illustrated in the following two 
figures: 

 

Figure 29: Total mass of airborne droplets situated 1.5 m above ground in the corridor, plotted in groups of 
particle sizes by diameter for (a) a weak cough, and (b) a strong cough. 
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Figure 30: Trajectories for particles during 15 s after coughing for (a) a strong cough with no draft, and also 
with an incoming draft of 1 m/s for (b) a weak cough, 6 m/s, and (c) a strong cough 12 m/s. Left column (red 

particles) for airborne respiratory droplets with a diameter between 50–100 μm, Right column (green 
droplets) for particles with a diameter between 150–200 μm. 

Thus, distancing alone is insufficient. The study recommends that additional safety measures be 
enforced, such as wearing masks, stricter usage protocols for corridors by limiting corridor use to 
one person every 20–30 seconds or eliminating natural ventilation when feasible to effectively 
mitigate transmission risks in such environments. 

 Unsupervised machine learning for predicting airborne 
pathogen droplet dispersion 

In (Christakis & Drikakis, 2023a) the development of a novel algorithm for unsupervised learning 
called RUN-ICON (Reduce UNcertainty and Increase CONfidence) was presented. The primary 
objective of the algorithm is to enhance the reliability and confidence of unsupervised clustering. 
RUN-ICON leverages the K-means++ method to identify the most frequently occurring dominant 
centers through multiple repetitions. It distinguishes itself from existing K-means variants by 
introducing novel metrics, such as the Clustering Dominance Index and Uncertainty, instead of 
relying solely on the Sum of Squared Errors, for identifying the most dominant clusters. The algorithm 
exhibits notable characteristics such as robustness, high-quality clustering, automation, and 
flexibility. Extensive testing on diverse data sets with varying characteristics demonstrated its 
capability to determine the optimal number of clusters under different scenarios.  
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In (Christakis & Drikakis, 2023b), the RUN-ICON algorithm was applied on a numerical experiment 
to evaluate the RUN-ICON algorithm’s ability to represent the collective behavior of a group of 1000 
non-interacting particles originating from a common point. These particles were left to propagate on 
a 2D plane, following a set of ordinary differential equations, allowing multiple particles to follow the 
same trajectory. The parameters of these differential equations were randomly selected from a 
uniform distribution. The primary objective was to assess the algorithm’s capacity to capture the 
complex dynamics exhibited by the particle group and its potential applications in simulating particle-
based systems without the need for computationally expensive inter-particle force calculations. The 
particle trajectories and final positions were recorded after 10 dimensionless time units in the 
dimensionless x-y plane. The particles were clustered using the RUN-ICON algorithm based on their 
final positions. The algorithm separated the particles into either four clusters (for the smallest range 
of parameters c and d) or three clusters (for the higher ranges of parameters c and d, when particle 
separation was evident) with high confidence and low uncertainty. In contrast, the repeat and 
Bayesian K-means and DBSCAN algorithms did not manage to separate the particles confidently. 
Moreover, when noise was added to the system, RUN-ICON predicted with increased confidence 
(almost 100%) the separation of the particles in five clusters. The performance of the other methods 
was unsatisfactory. These findings provide evidence about the accuracy and efficiency of the RUN-
ICON algorithm, which performs extremely well in data sets where noise is present. 

The RUN-ICON algorithm was also used to analyze virus droplet dynamics resulting from coughing 
events within a confined environment using, as an example, a typical cruiser's cabin (Christakis et 
al., 2024). It is of paramount importance to be able to comprehend and predict droplet dispersion 
patterns within enclosed spaces under varying conditions. Data from multi-phase computational fluid 
dynamics simulations of coughing events at different flow rates were utilized with the RUN-ICON 
unsupervised learning algorithm to identify prevailing trends based on the distance travelled by the 
droplets and their sizes. The analysis in this study revealed the existence of three distinct stages for 
droplet dispersion during a coughing event, irrespective of the underlying flow rates. An initial stage 
where all droplets disperse homogeneously, an intermediate stage where larger droplets overtake 
the smaller ones, and a final stage where the smaller droplets overtake the larger ones. This is the 
first time CFD is coupled with unsupervised learning to study particles' dispersion and understand 
their dynamic behavior. 

Understanding the dispersion of particles in enclosed spaces is crucial for controlling the spread of 
infectious diseases. In (Christakis & Drikakis, 2024), an innovative approach that combines an 
unsupervised learning algorithm with a Gaussian mixture model to analyze the behavior of saliva 
droplets emitted from a coughing individual. The algorithm effectively clusters data, while the 
Gaussian mixture model captures the distribution of these clusters, revealing underlying sub-
populations and variations in particle dispersion. Using CFD data, this integrated method offers a 
robust, data-driven perspective on particle dynamics, unveiling intricate patterns and probabilistic 
distributions previously unattainable. The combined approach significantly enhanced the accuracy 
and interpretability of predictions, providing valuable insights for public health strategies to prevent 
virus transmission in indoor environments. The practical implications of this study were profound, as 
it demonstrated the potential of advanced unsupervised learning techniques in addressing complex 
biomedical and engineering challenges. Moreover, it underscored the importance of coupling 
sophisticated algorithms with statistical models for comprehensive data analysis. The potential 
impact of these findings on public health strategies is significant, highlighting the relevance of this 
research to real-world applications. 
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The RUN-ICON algorithm was also used to optimize sensor placement in indoor air-conditioned 
environments (Christakis et al., 2025) by integrating computational fluid dynamics simulations with 
artificial intelligence techniques in an unsupervised learning framework. Spatially distinct thermal 
and velocity clusters based on temperature and velocity magnitude distributions were identified. 
Optimization of sensor positions within these clusters, guided by sequential least squares 
programming, resulted in an effective strategy to minimize probe redundancy while maximizing 
spatial coverage. The investigation highlighted the interplay between temperature, relative humidity, 
velocity, and turbulence intensity, revealing critical insights into airflow behavior and its implications 
for occupant comfort. In addition, the findings also underscored the potential for targeted sensor 
placement to provide a robust framework for advanced indoor climate control. 

 

 EXPERIMENTS & RESULTS 

 DECISION-MAKING MODULE 

 Eating Area 

For experiments regarding eating areas of the ship two representative areas were selected from the 
ship schematics of the World Dream cruise ship, presented in Section 2 (Figure 2). Two adjacent 
eating areas of varying surface area and passenger capacity were selected. These eating areas are 
presented in Figure 31. The two examined restaurant areas, i.e., e1 and e2 had a surface area equal 
to 276 m2 and a maximum capacity of 42 people, and Restaurant 2 has a surface area of 379 m2 
and a maximum capacity of 82 people, respectively; both restaurants have a height of 3 m.  

 
Figure 31 Topography of the two examined restaurant areas e1 and e2 residing in Deck 08, highlighted with 
red. 

In addition, the following five risk factors were considered based on the sensors included in the smart 
ship design proposed in (Triantafyllou, Kalozoumis, et al., 2024) and the most probable symptoms 
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of COVID-19 that were identified by the partner HPI in Subsection 3.1.1 (Table 2). A mapping of the 
available sensors and the corresponding risk factor for COVID-19 can be observed in Table 7. 

Table 7 Information provided by each available sensor. 

Sensors  Informat ion  

1. RNA sensor (in HVAC) Detected pathogen 

2. Audio sensor  Number of coughs 

3. Thermal camera sensor Fever 

4. RFID sensor  Number of passengers, exposure time 

Analysis of Risk Factors related to airborne disease transmission  

Body Temperature: Elevated body temperature levels, above 39°C, assist in reducing the pathogen 
concentration within the infected host while impeding its replication rate (Singh et al., 2022; Wrotek 
et al., 2021). The proposed method considers the maximum body temperature detected over a 
period of time for the assessment of COVID-19 TR.  

Room Ventilation: An important countermeasure against airborne infectious diseases in indoor 
environments is the HVAC system, which is responsible for circulating air from the outdoor 
environment inside the room. This circulation is defined as the airflow rate 𝑄 (m3/h) calculated as 
follows: 

𝑄 =  𝐴𝐶𝐻 · 𝑉        (3) 

where ACH is the number of air changes per hour and V the volume of the examined area (m3). 

 Several studies have examined the importance of different ventilation systems, as well as the 
optimal airflow rate and position of the HVAC system to mitigate the transmission of infectious 
diseases (Christakis et al., 2024; Motamedi et al., 2022; Ritos et al., 2023, 2024). The Centers for 
Disease Control and Prevention has proposed a minimum of 5 ACH as the optimal airflow rate (CDC, 
2023). In (Ritos et al., 2023, 2024), the effect of ACH was examined through CFD simulations. The 
optimal balance between HVAC effectiveness and passenger comfort for both private rooms and 
public indoor areas was identified as 3 ACH by the partner of the project UNIC, while an upper 
boundary of 6 ACH was suggested in (Ritos et al., 2024) and a minimum of 1.5 ACH was suggested 
in (Ritos et al., 2023). These boundaries resulted from CFD simulations that were conducted by the 
partner of the project UNIC. According to the identified limits and based on Eq. (3), the maximum, 
minimum, and optimal airflow rates for the HVAC system are set as 𝑄 =  6 · 𝑉, 𝑄 =  1.5 · 𝑉, and 𝑄 =

 3 · 𝑉, respectively. 

Cough: The proposed method considers the number of coughs captured by audio sensors in a ship 
compartment over a certain period of time to assess the TR. To determine the severity of the risk  

with respect to the number of coughs per hour, the pathogen concentration in a room is estimated 
based on the Wells-Riley probabilistic model (Sze To & Chao, 2010). Since the total pathogen 
concentration in the room cannot be easily quantified at a given moment, it is estimated based on 
the number of coughs as: 

𝑐௩(𝑡) = 𝑛௖(𝑡) ∙ 𝑐௟     (4) 
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where 𝑛௖(𝑡) is the number of coughs detected over a period of time 𝑡 and 𝑐௟ is the average number 
of virus particles per mL emitted in one cough. 

The Wells-Riley model assumes a well-mixed air distribution in indoor environments and defines 
the risk of one individual contracting the infection based on the exposure time in the room as:  

𝑃 = 1 − 𝑒
ି

೜∙೙್∙೟

ೂ      (5) 

where 𝑃 is the probability that an individual will get infected, 𝑞 is the quanta emission rate (quanta/h). 
The quanta describe the number of virus particles per mL emitted in the room (Sze To & Chao, 
2010). The variable 𝑛௕ is the breathing rate (m3/h), 𝑡 is the exposure time (h), and 𝑄 is the airflow 
rate (m3/h) in the room. The quanta emission rate (𝑞) is calculated as: 

𝑞 =
௖ೡ(௧)

ூ஽ఱబ
             (6) 

where 𝐼𝐷ହ଴ corresponds to the minimum infectious dose that can cause infection in 50% of the 
population (Sze To & Chao, 2010). 

To find the maximum number of coughs (𝑛௖(𝑡)) the following variables were used in Eq. (5) : 𝑃 ≅ 1, 
𝑛௕ = 0.5 m3/h (Zheng et al., 2016), 𝑡 = 1 h, 𝐼𝐷ହ଴ = 1 · 10ଷ virus particles per mL (Karimzadeh et al., 
2021), 𝑐௟ =  1 · 10ହ virus particles per mL (Y. Wang et al., 2020) and 𝑄 =  3 · 𝑉 (Ritos et al., 2024). 
For example, regarding Restaurant 1 (e1) with a surface area of 276 m2 and a height of 3 m, the 
maximum number of coughs is 200/h. 

Exposure Time: In an indoor area, the exposure time increases the risk of infection for each 
individual in the room. Here, the RA is performed assuming that a passenger can stay indoors for a 
period of 15-120 min. 

Occupancy: The population density in an indoor space affects the transmission of infectious 
diseases (Braidotti et al., 2022; Moon & Ryu, 2021). Droplets emitted through coughing can travel 
up to 0.92 m from the source (infectious individual) until they are no longer contributing to the 
transmission of the disease, i.e., they have either evaporated or settled on the floor (Ritos et al., 
2023). Therefore, it is essential to reconsider the way that the occupancy of a room is calculated and 
incorporate the distance between each person in the room in the occupancy calculation process. 
This distance is defined as the minimum distance between two individuals, assuming that they are 
uniformly distributed within the room. Thus, the area occupied by each person can be defined as: 

𝐷 =  
ே∙గ∙௥మ

஺
        (7) 

where 𝑁 is the number of people inside the room, 𝑟 is the contact radius for each person in the room 
(m), and 𝐴 is the surface area of the room (m2). Since the surface area of the room is constant 
𝑟 depends on the number of people inside the room. Therefore, considering that each person 
occupies a surface area of 𝐷 = 1 mଶ, the maximum radius 𝑟௠௔௫ for a room can be calculated as: 

𝑟௠௔௫ =  ට
஺

ே∙గ
        (8) 

Assuming that each person resides in the center of a circle characterized by a specific radius 𝑟௠௔௫, 
then the distance between two individuals is estimated as 2 ∙ 𝑟௠௔௫. As reported in (Ritos et al., 2023), 
the maximum cough range, under suboptimal HVAC settings, is denoted by the distance 𝑑௖  =

 0.92 m. Therefore, based on Eq. (8), the risk increases as the distance between two individuals 
calculated as 2 ∙ 𝑟௠௔௫ is less than 𝑑௖. The relation between 𝑟௠௔௫ and 𝑑௖  can be classified into three 
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possible cases corresponding to 2 ∙ 𝑟௠௔௫ < 𝑑௖, 2 ∙ 𝑟௠௔௫ = 𝑑௖, and 2 ∙ 𝑟௠௔௫ > 𝑑௖. The resulting fuzzy 
sets for the eating areas e1/e2 can be observed in Table 8 and in Figure 32. 

Table 8 Fuzzy set for each identified risk factor. 

Fuzzy 
Set 

 
Room 

Ventilation 
Body 

Temperature 

Total 
Number 

of 
Coughs 

Total 
Number of 

Passengers 

Exposure 
Time 

Risk 

Low 
e2 [0,3369] 

[35,38] 
[0,61] [2,20] [15,45] [0,0.3] 

e1 [0,2400] [0,44] [2,10]   

Med. 
e2 [1685,6738] 

[36,39] 
[25,97] [10,40] [30,60] [0.1,0.5] 

e1 [1200,4800] [17,71] [5,20]   

High 

e2 [3369,6738] 

[38,42] 

[61,250] [20, 81] 

[45,120] [0.3,1] 
e1 [2511,5022] [50,200] [10,42] 

 

Additionally, the correlation between each factor and the risk of disease transmission is summarized 
in Table 9.  

Table 9 Correlation of each factor with risk of COVID-19 transmission. 

Risk factors  Impact on Transmission Risk  

1. HVAC (Air Flow Rate) Lower, Higher ↑  Moderate ↓ 

2. Coughing Lower ↓ Higher ↑  

3. Fever Lower ↑ Higher ↓ 

4. Number of Passengers  Lower ↓ Higher ↑  

5. Surface Area Lower ↑ Higher ↓ 

6. Passenger Exposure Time  Lower ↓ Higher ↑ 
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Figure 32 Fuzzy sets for the input factors: (a) time; (b) number of coughs; (c)-(d) HVAC airflow; (e)-
(f) number of passengers; (g) body temperature; (h) risk of COVID-19 transmission.  

 

Fuzzy Rules 

An overview of the 57 generated fuzzy rules can be observed in Figure 33. In detail, the fuzzy rules 
defined for the examined problem under investigation are the following: 

1. IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Low AND 
Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
2. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 



D3.2 –  R isk  assessment  methodo log ies ,  models  and a lgor i thms  
Vers ion 2 .0  –  Date 10.03.2025  
 

  

 

Page 75 

 

3. IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Medium 
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
4. IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Low AND 

Number of Passengers in Restaurant is Medium AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
5. IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Low AND 

Number of Passengers in Restaurant is Low AND Time of Exposure is Medium THEN 
Transmission Risk is Low  

 
6. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low 
THEN Transmission Risk is Low  

 
7. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
Medium THEN Transmission Risk is Medium 

 
8. IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is Medium 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is Medium  

 
9. IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is Medium  

 
10. IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN 
Transmission Risk is High  

 
11. IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN 
Transmission Risk is High  

 
12. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is High 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is High  

 
13. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium 
THEN Transmission Risk is High  

 
14. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
High THEN Transmission Risk is High  
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15. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is High 
AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN 
Transmission Risk is High  

 
16. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is High 
THEN Transmission Risk is High  

 
17. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN 
Transmission Risk is High  

 
18. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
Medium THEN Transmission Risk is Medium  

 
19. IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
20. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

Low AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
21. IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
22. IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
23. IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low 
THEN Transmission Risk is Low  

 
24. IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
25. IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Medium THEN 
Transmission Risk is Low  

 
26. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

Low AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  
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27. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 
Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low 
THEN Transmission Risk is Low  

 
28. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
Medium THEN Transmission Risk is Medium  

 
29. IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
Medium THEN Transmission Risk is Medium  

 
30. IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is Medium  

 
31. IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN 
Transmission Risk is High  

 
32. IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN 
Transmission Risk is High  

 
33. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

High AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is Medium  

 
34. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium 
THEN Transmission Risk is Medium  

 
35. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
High THEN Transmission Risk is Medium  

 
36. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

High AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium 
THEN Transmission Risk is High  

 
37. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is High 
THEN Transmission Risk is High  

 
38. IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is 

High AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN 
Transmission Risk is High  
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39. IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Low AND 
Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
40. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
41. IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Medium 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
42. IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Low AND 

Number of Passengers in Restaurant is Medium AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
43. IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Low AND 

Number of Passengers in Restaurant is Low AND Time of Exposure is Medium THEN 
Transmission Risk is Low  

 
44. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is Low 

AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN 
Transmission Risk is Low  

 
45. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low 
THEN Transmission Risk is Medium  

 
46. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
Medium THEN Transmission Risk is Medium 

 
47. IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is Medium 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is High  

 
48. IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is Medium 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is Medium  

 
49. IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is High  

 
50. IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN 
Transmission Risk is High  
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51. IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is High 
AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN 
Transmission Risk is High  

 
52. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is High 

AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium 
THEN Transmission Risk is High  

 
53. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium 
THEN Transmission Risk is High  

 
54. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is 
High THEN Transmission Risk is High  

 
55. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN 
Transmission Risk is High  

 
56. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is 

Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is High 
THEN Transmission Risk is High  

 
57. IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is High 

AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN 
Transmission Risk is High 
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Figure 33 Overview of the generated fuzzy rules for risk assessment of COVID-19 disease spread. 

 

Experimental Cases 

To evaluate the effectiveness of the defined fuzzy rules, 8 different scenarios comprising various 
values of input risk factors were examined for the two types of restaurants. For each of 8 scenarios, 
the input factors considered were the ventilation setting as well as the max body temperature, the 
total number of coughs and the total number of passengers detected over a certain period of time. 
These scenarios are summarized in Table 10, where the parentheses contain the respective 
linguistic values indicating the membership of a risk factor to a respective fuzzy set (L)ow, (M)edium, 
or (H)igh. 

The proposed method was verified using the ABM framework Vadere (Rahn et al., 2022) and 
a risk index, hereinafter RiskABM, defined as the total number of infected people at the end of the 
simulation over the total number of people in the environment. Furthermore, the RiskABM is 
linguistically characterized using the fuzzy sets as illustrated in Figure 33(h). The ABM framework 
was used to simulate 100 iterations for each case that produced corresponding RiskABM values with 
a standard deviation ranging from 0.05 to 0.18. 

Rule 
(No) 

HVAC 
Airflow 

Body 
Temperature 

Number of 
Coughs 

Number of 
Passengers 

Time 
exposure Risk 

1 LOW LOW LOW LOW LOW LOW 

2 LOW MEDIUM LOW LOW LOW LOW 

3 LOW LOW MEDIUM LOW LOW LOW 

4 LOW LOW LOW MEDIUM LOW LOW 

5 LOW LOW LOW LOW MEDIUM LOW 

6 LOW MEDIUM MEDIUM LOW LOW LOW 

7 LOW MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM 

8 LOW HIGH MEDIUM MEDIUM MEDIUM MEDIUM 

9 LOW HIGH HIGH MEDIUM MEDIUM HIGH 

10 LOW HIGH HIGH HIGH MEDIUM HIGH 

11 LOW HIGH HIGH HIGH HIGH HIGH 

12 LOW MEDIUM HIGH MEDIUM MEDIUM HIGH 

13 LOW MEDIUM MEDIUM HIGH MEDIUM HIGH 

14 LOW MEDIUM MEDIUM MEDIUM HIGH HIGH 

15 LOW MEDIUM HIGH HIGH MEDIUM HIGH 

16 LOW MEDIUM MEDIUM HIGH HIGH HIGH 

17 LOW MEDIUM HIGH HIGH HIGH HIGH 

18 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM 

19 MEDIUM LOW LOW LOW LOW LOW 

20 MEDIUM MEDIUM LOW LOW LOW LOW 

21 HIGH HIGH LOW LOW LOW LOW 

22 MEDIUM HIGH LOW LOW LOW LOW 

23 MEDIUM LOW MEDIUM LOW LOW LOW 

24 MEDIUM LOW LOW MEDIUM LOW LOW 

25 MEDIUM LOW LOW LOW MEDIUM LOW 

26 MEDIUM MEDIUM LOW LOW LOW LOW 

27 MEDIUM MEDIUM MEDIUM LOW LOW LOW 

28 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM 

Rule 
(No) 

HVAC 
Airflow 

Body 
Temperature 

Number of 
Coughs 

Number of 
Passengers 

Time 
exposure Risk 

29 MEDIUM HIGH MEDIUM MEDIUM MEDIUM MEDIUM 

30 MEDIUM HIGH HIGH MEDIUM MEDIUM MEDIUM 

31 MEDIUM HIGH HIGH HIGH MEDIUM HIGH 

32 MEDIUM HIGH HIGH HIGH HIGH HIGH 

33 MEDIUM MEDIUM HIGH MEDIUM MEDIUM MEDIUM 

34 MEDIUM MEDIUM MEDIUM HIGH MEDIUM MEDIUM 

35 MEDIUM MEDIUM MEDIUM MEDIUM HIGH MEDIUM 

36 MEDIUM MEDIUM HIGH HIGH MEDIUM HIGH 

37 MEDIUM MEDIUM MEDIUM HIGH HIGH HIGH 

38 MEDIUM MEDIUM HIGH HIGH HIGH HIGH 

39 HIGH LOW LOW LOW LOW LOW 

40 HIGH MEDIUM LOW LOW LOW LOW 

41 HIGH LOW MEDIUM LOW LOW LOW 

42 HIGH LOW LOW MEDIUM LOW LOW 

43 HIGH LOW LOW LOW MEDIUM LOW 

44 HIGH MEDIUM LOW LOW LOW LOW 

45 HIGH MEDIUM MEDIUM LOW LOW MEDIUM 

46 HIGH MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM 

47 HIGH HIGH HIGH HIGH HIGH HIGH 

48 HIGH HIGH MEDIUM MEDIUM MEDIUM MEDIUM 

49 HIGH HIGH HIGH MEDIUM MEDIUM HIGH 

50 HIGH HIGH HIGH HIGH MEDIUM HIGH 

51 HIGH HIGH HIGH HIGH HIGH HIGH 

52 HIGH MEDIUM HIGH MEDIUM MEDIUM HIGH 

53 HIGH MEDIUM MEDIUM HIGH MEDIUM HIGH 

54 HIGH MEDIUM MEDIUM MEDIUM HIGH HIGH 

55 HIGH MEDIUM HIGH HIGH MEDIUM HIGH 

56 HIGH MEDIUM MEDIUM HIGH HIGH HIGH 

57 HIGH MEDIUM HIGH HIGH HIGH HIGH 
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Table 10 Input risk factors for risk assessment of COVID-19 transmission for e1/e2 eating areas. 

No.  
Venti lation  

(m3 /h)  

Max Body 
Temperature  

(°C)  

Total 
Number of  

Coughs  

Total 
Number of  

Passengers 

Time  

(min)  

1 1615 (L/L) 36.6 (L) 44 (M/M) 8 (Μ/L) 43 (M) 

2 1615 (L/L) 38.0 (M) 44 (M/M) 8 (Μ/L) 43 (M) 

3 2977 (M/M) 37.1 (L) 109 (H/H) 38 (H/M) 56 (M) 

4 2977 (M/M) 37.1 (L) 50 (L/L) 38 (H/M) 56 (M) 

5 2619 (M/M) 38.7 (H) 105 (H/H) 31 (H/M) 83 (H) 

6 2619 (M/M) 38.7 (H) 105 (H/H) 31 (H/M) 31 (L) 

7 2964 (M/M) 40.0 (H) 107 (H/H) 34 (H/M) 48 (M) 

8 4017 (H/M) 38.7 (H) 50 (M/M) 25 (H/M) 32 (L) 

 

 

Table 11 Risk assessment of COVID-19 transmission for e1/e2 eating areas using fuzzy rules. 

No.  Risk  Conf idence  RiskA B M  

1 0.15 (L)/ 0.15 (L) 0.78/ 0.78 0.18 (L) / 0.05(L)  

2 0.38 (M)/ 0.45 (M) 0.61/ 0.78 0.15 (L) / 0.23(L)  

3 0.76 (H)/ 0.71 (H) 0.69/ 0.53 0.81 (H) / 0.64(H)  

4 0.64 (H)/ 0.60 (H) 0.37/ 0.36 0.54 (H) / 0.42(Μ)  

5 0.79 (H)/ 0.41 (M) 0.73/ 0.70 0.81 (H) / 0.64(H)  

6 0.75 (H)/ 0.58 (H)  0.64/ 0.25 0.80 (H) / 0.60(H)  

7 0.15 (L)/ 0.15 (L) 0.78/ 0.78 0.80 (H) / 0.60(H) 

8 0.38 (M)/ 0.45 (M) 0.61/ 0.78 0.58 (H) / 0.42(M) 

 

Based on the results presented in Table 11, the following observations can be made: 
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An increase in the total number of passengers in a room, depending on the room capacity, results 
in an increase in the risk of the spread of the disease. For example, in Case 3, there is a greater risk, 
i.e., 𝑅𝑖𝑠𝑘 1 = 0.76 in Restaurant 1 (e1), where there is a High number of passengers, compared to 
the risk of Restaurant 2 (e2), i.e., 𝑅𝑖𝑠𝑘 2 = 0.71, where there is a Medium number of passengers. 

Proper use of the HVAC system helps reduce the risk of disease spreading. For instance, in Case 
8, where the system is properly configured for Restaurant 2, the risk is estimated to be lower than 
for Restaurant 1, i.e., 𝑅𝑖𝑠𝑘 1 = 0.63 > 𝑅𝑖𝑠𝑘 2 = 0.60. 

 An increased number of coughs increases the risk of disease spreading. This can be observed 
when comparing Case 3 with Case 4, where for 109 and 50 coughs, the risks are 0.76 and 0.64, 
respectively.  
 

 Αn increased body temperature can lead to a higher risk of disease spreading on cruise ships. 
For example, a Low body temperature equal to 36.6°C is related to a 𝑅𝑖𝑠𝑘 1 = 0.15 (Case 1), 
which is lower than 𝑅𝑖𝑠𝑘 1 = 0.38 (Case 2) that is related to a Medium body temperature (38°C). 

In addition, it can be observed that, in almost all cases, the proposed method is capable of assessing 
the TR in accordance with the ABM framework. Moreover, in most cases the estimated TR 
demonstrates high confidence ensuring the certainty of the result (Table 11). However, a difference 
can be observed between the calculated risks for the Case 5-Restaurant 2, where 𝑅𝑖𝑠𝑘 2 is assigned 
to a High TR with high confidence compared to the respective RiskABM that indicates a Medium TR. 
This can be attributed to the fact that the ABM framework simulates pedestrian dynamics that are 
not represented in the fuzzy rules. The interactions of the passengers were not incorporated into the 
fuzzy rules, since they could not be detected by the available sensors. 

Regarding cases were the confidence of the decision-making module (fuzzy rule-based system) is 
low the ABM was used to increase the confidence of the RA process. For example, in Case 4 of 
Table 11, the decision-making module has low confidence. By utilizing the output of the ABM, the 
risk predicted for e1 is validated as high, whereas for e2 is medium.  

Effect of masks and vaccination on airborne disease transmission 

Masks are a key countermeasure for reducing airborne disease transmission. Depending on the type 
of mask their efficiency may vary from 30% for cloth masks to 91% for surgical masks and up to 
99.8% for N95 masks (A.-B. Wang et al., 2023). To account for this in the fuzzy rule-based system, 
the number of passengers wearing masks in an area is considered as an additional risk factor. 
Hence, a higher total number of people wearing masks is correlated with a reduced risk of 
transmission. Furthermore, vaccination is another crucial preventive measure. For COVID-19, 
vaccine effectiveness ranges from 50% to 70% (Harder et al., 2021; Law et al., 2023). Similar to 
masks, the total number of vaccinated people is included as an additional risk factor, where a higher 
number of vaccinated passengers is correlated with a reduced risk of disease transmission. 

Fuzzy Rules with masks and vaccination 

1. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is Low THEN Risk is Low  

2.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is Medium THEN Risk is Low  
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3.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is High THEN Risk is Low  

4.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

5.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

6.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

7.  IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

8.  IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

9.  IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

10.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

11.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

12.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

13.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

14.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

15.  IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

16.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

17.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

18.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  
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19.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

20.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

21.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

22.  IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

23.  IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

24.  IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

25.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

26.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

27.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

28.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is High AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

29.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is High AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

30.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is High AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

31.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is High AND Time Exposure is High AND Number of Vaccinated Passengers 
is Low THEN Risk is Low  

32.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is High AND Time Exposure is High AND Number of Vaccinated Passengers 
is Medium THEN Risk is Low  

33.  IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
wearing mask is High AND Time Exposure is High AND Number of Vaccinated Passengers 
is High THEN Risk is Low  

34.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  
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35.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

36.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

37.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

38.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

39.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

40.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

41.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

42.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

43.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

44.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

45.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

46.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Medium  

47.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

48.  IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

49.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Medium  

50.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  
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51.  IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

52.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

53.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

54.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

55.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

56.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

57.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

58.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

59.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

60.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

61.  IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is Low THEN Risk is Low  

62.  IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is Medium THEN Risk is Low  

63.  IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is High THEN Risk is Low  

64.  IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

65.  IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

66.  IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  
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67.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

68.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

69.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

70.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Low AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

71.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Low AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

72.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Low AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

73.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

74.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

75.  IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

76.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

77.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

78.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

79.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

80.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

81.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

82.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  
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83.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

84.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

85.  IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

86.  IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

87.  IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

88.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

89.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

90.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

91.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

92.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

93.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

94.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

95.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

96.  IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

97.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

98.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  
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99.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

100.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

101.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

102.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

103.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

104.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

105.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

106.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

107.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

108.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

109.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

110.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

111.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

112.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

113.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

114.  IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  
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115.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is Low THEN Risk is Low  

116.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is Medium THEN Risk is Low  

117.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers 
is High THEN Risk is Low  

118.  IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

119.  IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

120.  IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

121.  IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

122.  IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

123.  IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

124.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

125.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

126.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

127.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

128.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

129.  IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers 
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

130.  IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  
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131.  IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

132.  IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

133.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

134.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

135.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

136.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

137.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

138.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

139.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Medium  

140.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Medium  

141.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Medium  

142.  IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

143.  IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

144.  IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

145.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

146.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  
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147.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

148.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

149.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

150.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

151.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Medium  

152.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Medium  

153.  IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

154.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

155.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

156.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

157.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

158.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

159.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

160.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is Low THEN Risk is Medium  

161.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

162.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is Medium AND Time Exposure is High AND Number of 
Vaccinated Passengers is High THEN Risk is Low  
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163.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Low THEN Risk is Low  

164.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is Medium THEN Risk is Low  

165.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is Medium AND Number of 
Vaccinated Passengers is High THEN Risk is Low  

166.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

167.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

168.  IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  

169.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Low THEN Risk is Low  

170.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is Medium THEN Risk is Low  

171.  IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated 
Passengers is High THEN Risk is Low  
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Experimental cases with masks and vaccination 

Several combinations of risk factor values were examined for both monitored environments e1 and 
e2. This experimental setup can be observed in Table 12. 

Table 12 Experimental cases with enhanced risk factors for e1/e2. 

No.  

Venti latio
n  

(m3 /h)  

Max Body 
Temperat

ure  

(°C)  

Total 
Number 

of 
Coughs  

Total 
Number 

of 
Passenge

rs with 
Mask 

Time  

 

Passenge
rs with 

vaccinat i
on 

1 1617 (L) 36.6 (L) 48 (M) 10 (M) 40 (M) 10 (M) 

2 1617 (L) 38.3 (M)  48 (M)  20 (H)  50 (M) 35 (H) 

3 2972 (M) 37.3 (M)  43 (M)  37 (H)  80 (H)  21 (H) 

4 2611 (M) 39 (H) 115 (H)  30 (H)  91 (H)  20 (H) 

5 2599 (M) 39 (H)  124 (H) 13 (M)  56 (M) 17 (H) 

 

Based on the results observed in Table 13, it can be inferred that the use of masks is an important 
countermeasure to disease transmission. In addition, increased number of vaccinated passengers 
may mitigate the risk of disease transmission, since vaccination increases the infection resistance 
of the passengers. 

 

Table 13 Risk assessment of COVID-19 transmission using enhanced fuzzy rules. 

No.  Risk  Conf idence  RiskA B M  

1 0.1512 (L) 0.75 0.155 (L) 

2 0.16 (L) 0.81 0.25 (L) 

3 0.16 (L) 0.80 0.14 (L) 

4 0.19 (L) 0.98 0.157 (L) 

5 0.20 (L) 0.93 0.12 (L) 
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 Vessel’s other high-risk public spaces  

Two representative bar areas of the World Dream ship were selected for the experiments related to 
high-risk public spaces of the ship. These areas, due to increased mobility and relaxed safe distance 
policies between the passengers, can lead to scenarios of high transmission risk (Figures 7-9). The 
bar areas examined are presented in Figure 34. The two examined indoor environments, i.e., e1 and 
e2 had surface areas of 351 m2 and 250 m2, respectively. The capacity of e1 and e2 was set to 81 
and 44 people, respectively. Both of the bar areas had a height of 3.2 m. 

 

Figure 34 Topography of the two examined bar areas e1 and e2 residing in Deck 08, highlighted with red. 

 

 

Analysis of Risk factors 

The risk factors considered in these experiments were the same as in Subsection 5.1.1. An additional 
risk factor was considered to accommodate the poor distancing conditions in such scenarios. This 
risk factor, hereinafter contact distance, considers the dynamics of droplet dispersion in the area 
based on CFD studies that examined the maximum reach of droplets for different ventilation settings 
in a public indoor area. (Triantafyllou, Kalozoumis, et al., 2024). The area occupied by a person is 
defined by a surface, D (m2), of a circle with a radius, r (m), similarly to the Subsection 5.1.1. Since 
the surface area of the room is constant 𝑟 depends on the number of people inside the room. 
Therefore, considering that each person occupies a surface area of 𝐷 = 1 mଶ, the radius 𝑟 is defined 
as the contact distance between the individuals in a room. Therefore, considering that droplets 
emitted through coughing can spread up to 1 m (Ritos et al., 2023, 2024), the risk increases when 
2 ∙ 𝑟 < 1 m and decreases when 2 ∙  𝑟 ≥ 1 m (Figure 35). When 2 ∙  𝑟 ≥ 2 m the individuals are 
considered safely distanced (Organization & others, 2020a).  
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Figure 35 TR in a room depending on the dis tance between r  and dc .  For  the cases (a) 
2 ∙ 𝑟 < 1,  (b)  2 ∙ 𝑟 = 1,  and (c)  2 ∙ 𝑟 > 1.  

The correlation between the Contact Distance risk factor and the risk of COVID-19 transmission can 
be summarized in Table 14. 

  
Table 14 Correlation of risk of COVID-19 transmission with Contact Distance. 

Risk factors  Impact on Transmission Risk  

1. Contact Distance Lower ↑ Higher ↓ 

 
 

Fuzzy Rules 

Appropriate fuzzy rules were generated based on experts’ knowledge resulting in 154 fuzzy rules. 
This set contained more rules due to the additional risk factors. The fuzzy rule set is presented as 
follows: 

1. IF HVAC airflow is Low ANDAND Fever is Low ANDAND Cough is Low ANDAND Number 
of Passengers is Low ANDAND Time Exposure is Low AND Contact Distance is Medium 
THEN Risk is Low 

2. IF HVAC airflow is Low ANDAND Fever is Low ANDAND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

3. IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

4. IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

5. IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

6. IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

7. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
is Medium AND Time Exposure is Low AND Contact Distance is Low THEN Risk is Low  

8. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
is Medium AND Time Exposure is Low AND Contact Distance is Medium THEN Risk is Low  
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9. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
is Medium AND Time Exposure is Low AND Contact Distance is High THEN Risk is Low  

10. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
is Low AND Time Exposure is Medium AND Contact Distance is Medium THEN Risk is Low  

11. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers 
is Low AND Time Exposure is Medium AND Contact Distance is High THEN Risk is Low  

12. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Medium  

13. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
High  

14. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

15. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

16. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

17. IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

18. IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

19. IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

20. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN Risk is High  

21. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is Medium AND Time Exposure is Medium AND Contact Distance is Medium THEN Risk is 
High  

22. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is Medium AND Time Exposure is Medium AND Contact Distance is High THEN Risk is 
Medium  

23. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is High AND Time Exposure is Medium AND Contact Distance is Low THEN Risk is High  

24. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is High AND Time Exposure is Medium AND Contact Distance is Medium THEN Risk is High  

25. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is High AND Time Exposure is Medium AND Contact Distance is High THEN Risk is Medium  

26. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is High AND Time Exposure is High THEN AND Contact Distance is Low THEN Risk is High  

27. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is High AND Time Exposure is High THEN AND Contact Distance is Medium THEN Risk is 
High  
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28. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers 
is High AND Time Exposure is High THEN AND Contact Distance is High THEN Risk is High  

29. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

30. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

31. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

32. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

33. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is Medium  

34. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

35. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Low 
THEN Risk is High  

36. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

37. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is High 
THEN Risk is Medium  

38. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

39. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is High  

40. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is High  

41. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN 
Risk is High  

42. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

43. IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN 
Risk is Medium  

44. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN 
Risk is High  
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45. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

46. IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN 
Risk is High  

47. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

48. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

49. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

50. IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

51. IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

52. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Low THEN Risk is 
Low  

53. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

54. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

55. IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers 
is Low AND Time Exposure is Low AND Contact Distance is Medium THEN Risk is Low  

56. IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers 
is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is Low  

57. IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

58. IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

59. IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

60. IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

61. IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Low THEN 
Risk is Low  
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62. IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

63. IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers is Medium AND Time Exposure is Low AND Contact Distance is High THEN 
Risk is Low  

64. IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is Low  

65. IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Low  

66. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

67. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

68. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Low THEN Risk is 
Low  

69. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

70. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

71. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

72. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

73. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

74. IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

75. IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

76. IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

77. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  
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78. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is High  

79. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is High  

80. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

81. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is High  

82. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is High  

83. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN 
Risk is High  

84. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

85. IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN 
Risk is High  

86. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

87. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is High  

88. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is High  

89. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

90. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is Medium  

91. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

92. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Low 
THEN Risk is High  

93. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  
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94. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is High 
THEN Risk is High  

95. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

96. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is Medium  

97. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is High  

98. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN 
Risk is High  

99. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

100. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND 
Number of Passengers is High AND Time Exposure is High THEN AND Contact Distance is 
High THEN Risk is Medium  

101. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number 
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low 
THEN Risk is High  

102. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number 
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

103. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number 
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is High 
THEN Risk is High  

104. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

105. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

106. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

107. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

108. IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

109. IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  
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110. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of 
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Low THEN 
Risk is Low  

111. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of 
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

112. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of 
Passengers is Medium AND Time Exposure is Low AND Contact Distance is High THEN 
Risk is Low  

113. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is Low  

114. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Low  

115. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

116. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of 
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is 
Low  

117. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN 
Risk is Low  

118. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk 
is Low  

119. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low 
THEN Risk is High  

120. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

121. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High 
THEN Risk is Medium  

122. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN 
Risk is High  

123. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

124. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN 
Risk is High  

125. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  
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126. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

127. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

128. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

129. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  

130. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

131. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

132. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is High  

133. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is High  

134. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN 
Risk is High  

135. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

136. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN 
Risk is High  

137. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

138. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is High  

139. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

140. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is Medium  

141. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium 
THEN Risk is Medium  
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142. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

143. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Low 
THEN Risk is High  

144. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is 
Medium THEN Risk is Medium  

145. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is High 
THEN Risk is Medium  

146. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN 
Risk is High  

147. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN 
Risk is High  

148. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN 
Risk is Medium  

149. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low 
THEN Risk is High  

150. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

151. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number 
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is High 
THEN Risk is Medium  

152. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN 
Risk is High  

153. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium 
THEN Risk is High  

154. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of 
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN 
Risk is High 

Experimental Cases 

Following the fuzzy rule set generation, several cases that simulated varying conditions inside the 
examined areas were utilized to assess the validity of the generated fuzzy rule sets. The examined 
bar areas e1 and e2 were used to define different cases with varying ventilation, max body 
temperature, total number of coughs, total number of passengers and contact distance 
configurations over a period of up to 120 min. The method was evaluated in 20 cases, 6 of which 
are indicatively presented in Table 16, with three (L)ow, (M)edium and (H)igh fuzzy sets for each risk 
factor. Similarly with Subsection 5.1.1 the corresponding fuzzy sets were generated based on the 
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examined areas and the risk factor analysis. The ranges of the fuzzy sets corresponding to each risk 
factor for the bar areas examined can be observed in Table 15.  

Table 15 Fuzzy sets for each risk factor corresponding to e1 and e2 bar areas. 

Fuzzy 
Set 

 
Room 
Ventilation 

Body 
Temperature 

Total 
Number 
of 
Coughs 

Total 
Number of 
Passengers 

Contact 
Distance 

Exposure 
Time 

Risk 

Low e1 [0,3369] [35,38] [0,61] [2,20] [0,1] [15,45] [0,0.3] 

 e2 [0,2400]  [0,44] [2,10]    

Med. e1 [1685,6738] [36,39] [25,97] [10,40] [0.5,1.5] [30,60] [0.1,0.5] 

 e2 [1200,4800]  [17,71] [5,20]    

High 
e1 [3369,6738] 

[38,42] 
[61,250] [20, 81] 

[1,2] [45,120] [0.3,1] 

e2 [2400,4800] [44,200] [10,44] 

 

Furthermore, for each scenario, the confidence score is defined as the degree of membership 
to the fuzzy set responsible for RA. The evaluation of the method was based on the results of the 
ABM framework that was also employed in Subsection 5.1.1, where similarly the RiskABM is defined 
as the total number of infected over the total number of passengers in the room. 

Table 16 Experimental cases with varying input risk factors for e1/e2 bar areas. 

No.  
Venti lation  

(m3 /h)  

Max Body 
Temperature  

(°C)  

Total 
Number of  

Coughs  

Total 
Number of  

Passengers 

Contact 
Distance 

(m)  

Time  

(min)  

1 L/L L M/M L/M M M 

2 L/L M M/M L/M M M 

3 M/M M H/H H/H L H 

4 M/M H H/H M/H Μ H 

5 M/M H H/H Η/H Η H 

6 M/M Μ Η/Η H/H Η H 

 

The results presented in Table 17 show that the proposed method aligns with the ABM tool 
for RA, with high confidence in estimating the transmission risk across most cases. Despite that the 
ventilation is considered an important countermeasure for airborne disease transmission, it is not 
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sufficient for cases with high number of coughs, passengers and/or exposure time. In most cases, 
the RA performed by the proposed method is comparable to the results obtained from the ABM 
simulations, with 83.3% accuracy for 20 cases. The incorrectly predicted risk, i.e., for e2 in Case 1 
(Table 17), estimated by the proposed method can be attributed to the factors of passenger 
movement and interactions since they are not represented in the rules. 

Regarding cases were the confidence of the decision-making module (fuzzy rule-based system) is 
low, the ABM was used to increase the confidence of the RA process. For example, in Case 2 of 
Table 17, the decision-making module has low confidence for the e1 bar area. By utilizing the output 
of the ABM, the risk predicted for e1 is validated as medium, effectively increasing the confidence of 
the RA process. Similarly, the ABM further validates the inferred risk in Case 3 for both bar areas 
and in Cases 5 & 6 for bar area e1. 

 

Table 17 Risk assessment of COVID-19 transmission for e1/e2 bar areas using fuzzy rules.  

No.  Risk  Conf idence  RiskA B M  

1 L/Η 0.88/0.26 L/L 

2 M/M 0.36/0.79 M/M 

3 Η/H 0.39/0.38 H/H 

4 H/H 0.71/0.75 H/H 

5 H/H 0.43/0.74 H/H 

6 H/H 0.58/0.74 H/H 

 

 Public toilet  

Public toilets in cruise ships can create a conducive environment for infectious diseases. The small 
available surface area combined with poor air quality can accelerate the transmission of infectious 
diseases. An infectious passenger might cough on their hands or have contaminated hands after 
using the toilet. By touching other surfaces areas and especially fomites that are frequently used by 
other passengers, an infectious individual can contribute to an accelerated transmission of the 
disease. highly infectious. Several risk factors were identified in the literature, such as washing 
hands, number of passengers entering the public toilet and disinfection of surfaces. These factors 
were not sufficient to create a fuzzy rule-based system similar to the other cases. Thus, an agent-
based probabilistic model was used to assess the risk of disease transmission in this scenario. 

Surface-mediated disease transmission can be considered for both airborne and waterborne 
diseases, such as COVID-19 and norovirus. Therefore, in these experiments we considered one 
case where a passenger infected with COVID-19 used the public toilet with a contaminated hand 
and then touched the exit door handle (fomite) of room. The exit door handle is examined, since it is 
a fomite that is accessed by all passengers who enter the public toilet (Figure 36). 
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Figure 36 Representative schematic of a public toilet with pathogens denoted as yellow circles. 

Dose-response model combined with surface-mediated disease transmission 
simulations 

A dose-response model was used to calculate the risk of infection for each passenger based on:  

            𝑃 = 1 − exp ቀ−
஽

ூୈఱబ
ቁ     (9) 

where 𝐷 is the dose that each passenger is exposed and 𝐼𝐷ହ଴ is the minimum infectious dose. 

To determine the number of virus particles (𝐷) that each healthy passenger is exposed to, surface-
mediated disease transmission simulations were conducted using the ABM model in (Arav et al., 
2021). According to this ABM model, each passenger that enters the public toilet is exposed to the 
virus based on: 

𝐷 = 𝑆௙௜ ∗ ൫𝑒௜௡ ∗ 𝐶௙௜൯       (10) 

where 𝑆௙௜ is the surface area of each finger of the passenger, 𝑒௜௡ is the transfer efficiency of the 

pathogen from the hand to the orifice and 𝐶௙௜ is the concentration of pathogen per cm2 on each finger. 

In this study, we consider that a passenger has equally distributed pathogens on each of their finger 
and 𝐷 is based on a touching event involving one finger of the passenger. 

The concentration of pathogen on the hand of each passenger 𝐶௙௜ is calculated based on: 

𝐶௙௜ = 𝑆௙௜ ∗ 𝑒௙௛  ∗ 𝐶௙௢     (11) 

where 𝑒௙௛ is the transfer efficiency of the pathogen from the fomite to the hand and 𝐶௙௢ is the 

concentration of pathogen per cm2 on the fomite. In contrast to (Arav et al., 2021), we consider that 
the passengers do not have contaminated hands and pathogen is only transferred from the fomite 
to the hand and not vice versa. 

Lastly, the concentration of pathogen of the fomite 𝐶௙௢ decreases after each touching event based 

on: 

𝐶௙௢ = 𝐶௙௢ −
஼೑೔

ௌ೑೚
     (12) 

 

A summary of each parameter used in the RA model can be observed in Table 18. 
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Table 18 Description of each parameter used in the RA model. 

Information RA model parameters 

Surface area (cm
2
) 

Finger  𝑺𝒇𝒊 

Fomite 𝑺𝒇𝒐 

Transfer efficiency of 
pathogen 

From fomite to hand 𝒆𝒇𝒉 

From hand to orifice 𝒆𝒊𝒏 

Concentration 

 of pathogen per cm
2
 

Fomite 𝑪𝒇𝒐 

Finger 𝑪𝒇𝒊 

Experimental Cases 

Several experimental cases were examined based on the public toilet scenario for COVID-19 and 
norovirus. For each experiment 𝑆௙௜ was set to 2 cm2 and 𝑆௙௢was set to 13.33 cm2 (Arav et al., 2021). 

For the COVID-19 experiments 𝑒௜௡ was set to 0.35, 𝑒௙௛ was set to 0.24 (Arav et al., 2021) and 𝐼𝐷ହ଴ 

was set to 1000 virus particles (Rahn et al., 2022). The initial pathogen on the fomite was set to 4500 
pathogens/cm2 based on measurements from the study in (Nicholls et al., 2023). This approximates 
the pathogen concentration on the fomite, due to lack of available data regarding the transfer 
mechanics of pathogen from mouth to hand due to coughing. For the norovirus experiments 𝑒௜௡ was 
set to 0.339, 𝑒௙௛ was sampled from a uniform distribution [0.05,0.22] (Canales et al., 2019) and 𝐼𝐷ହ଴ 

was set to 18 virus particles (Hall, 2012). As described in (Canales et al., 2019), different materials 
have different transfer efficiency. Since, the material type of the fomite is not always available, a 
uniform distribution with limits the minimum and maximum transfer efficiency of the probable fomite 
materials was used for the norovirus cases. Similarly to the COVID-19 experiments, the initial 
pathogen concentration was set to 243 cm2 based on a previous surface-based transmission study 
of a norovirus outbreak (Canales et al., 2019). The results of the experiments can be observed in 
Table 19. Since in these simulated scenarios the ABM was effectively part of the decision-making 
process, the confidence of the RA process is sufficient, and no further simulations are required. 

Table 19 Experimental cases for surface-based RA. 

No.  
Number of  

passengers  
Risk

C O V I D - 1 9
 Risk

N o r o v i r u s  
 

1. 10 0.72 (H) 0.9 (H) 

2. 20 0.65 (H) 0.84 (H) 

3. 30 0.59 (H) 0.83 (H) 

. 

 Public Swimming Pool Area 

In the swimming pool scenario, a decision-making module was examined, considering diseases that 
can be transmitted through water, such as norovirus, in an outdoor area. Similarly to Subsections 
5.1.1 and 5.1.2, a fuzzy-rule system was generated based on risk factors derived from the literature. 
These factors were first analyzed, and the generated fuzzy rules were then validated based on an 
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outbreak of norovirus that was found in the literature (Paranthaman et al., 2018). Specifically, the 
following risk factors were considered for the RA of disease transmission in swimming pools of the 
cruise ship: chlorine levels, age, time of exposure and number of passengers. To detect the 
symptoms, the available sensors included in the smart ship design proposed in (Triantafyllou, 
Kalozoumis, et al., 2024) were used. In addition, the most probable symptoms of norovirus were 
identified by the partner HPI (Subsection 3.1.1 and Table 3).  

Analysis of risk factors related to waterborne disease transmission 

In the examined outbreak, chlorine levels ranged from 0.5 to 1 mg/L (Paranthaman et al., 2018). The 
epidemiological study concluded that these levels were insufficient for preventing outbreaks of highly 
transmissible viruses, falling into a "grey area." The risk of norovirus disease transmission is 
correlated with factors such as the chlorine levels (Sheet, 2024), the age (Paranthaman et al., 2018), 
and the exposure time of individuals in the contaminated water (Pintar et al., 2010). Based on the 
literature, the association between the risk factors and the risk of disease transmission was defined 
and is summarized in Table 20.  

Table 20 Correlation of each risk factor with risk of norovirus transmission. 

 

Fuzzy Rules 

Following the analysis of the risk factors, respective fuzzy rules were generated: 

1. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time 
Exposure is Low THEN Risk is Medium 

2. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Medium 

3. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time 
Exposure is Low THEN Risk is Medium 

4. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time 
Exposure is Low THEN Risk is Medium 

5. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Medium AND 
Time Exposure is Low THEN Risk is Medium 

6. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Medium AND 
Time Exposure is Low THEN Risk is Medium 

7. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Medium AND 
Time Exposure is Low THEN Risk is Medium 

8. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time 
Exposure is Medium THEN Risk is High 
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9. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time 
Exposure is Medium THEN Risk is High 

10. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Medium 

11. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Medium 

12. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is High 

13. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is High 

14. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is High 

15. IF Chlorine Level is Low AND Age is High AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is Medium 

16. IF Chlorine Level is Low AND Age is High AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is Medium 

17. IF Chlorine Level is Low AND Age is High AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is Medium 

18. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is Medium THEN Risk is High 

19. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is Medium THEN Risk is High 

20. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is Medium THEN Risk is High 

21. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND 
Time Exposure is High THEN Risk is High 

22. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND 
Time Exposure is High THEN Risk is High 

23. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND 
Time Exposure is High THEN Risk is High 

24. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is Medium THEN Risk is High 

25. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is High 

26. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is High 

27. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is High 

28. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is High 

29. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is High 

30. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is Medium THEN Risk is Low 

31. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is Medium THEN Risk is Low 
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32. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is Medium THEN Risk is Low 

33. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

34. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

35. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

36. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

37. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

38. IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

39. IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

40. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

41. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

42. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Medium AND 
Time Exposure is Low THEN Risk is Low 

43. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Medium AND 
Time Exposure is Low THEN Risk is Low 

44. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Medium AND 
Time Exposure is Low THEN Risk is Low 

45. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND 
Time Exposure is Medium THEN Risk is Low 

46. IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND 
Time Exposure is Medium THEN Risk is Low 

47. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

48. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

49. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

50. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

51. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND 
Time Exposure is Low THEN Risk is Low 

52. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is Medium THEN Risk is Low 

53. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is Medium THEN Risk is Low 

54. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is Medium THEN Risk is Low 
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55. IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is Low 

56. IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is Low 

57. IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Medium AND 
Time Exposure is Medium THEN Risk is Low 

58. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is Medium THEN Risk is Low 

59. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is Medium THEN Risk is Low 

60. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is Medium THEN Risk is Low 

61. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is High THEN Risk is Low 

62. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is High THEN Risk is Low 

63. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium 
AND Time Exposure is High THEN Risk is Low 

64. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is Medium 

65. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is Medium 

66. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND 
Time Exposure is High THEN Risk is Medium 

Experimental Cases 

Following the validation of the generated fuzzy rules, several experiments were conducted 
by considering various combinations of risk factors for a swimming pool, hereinafter ship pool, found 
in the provided ship schematics (Figure 1). The selected swimming pool can also be observed in 
Figure 37. 

 

Figure 37 Schematics of the selected swimming pool on Deck 16, highlighted with red. 

These experiments aimed to observe the impact of a norovirus outbreak for different conditions and 
the results are provided in Table 21, where Risk denotes the risk predicted by the fuzzy rule-based 
system. It can be inferred from the results that chlorine levels are a crucial factor in the RA process 
and greatly affect the risk of disease transmission. For medium and high chlorine levels the risk of 
disease transmission is low even for low age and high exposure time, whereas for low chlorine levels 
the risk is high even for low exposure time and high number of passengers. The validation of the 
defined fuzzy rules was performed based on the research of (Paranthaman et al., 2018).  
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Table 21 Input risk factors and RA for various cases in the cruise ship pool. 

 

 Risk assessment of COVID-19 for multiple spaces 

For experiments regarding RA of COVID-19 for multiple spaces, 7 representative areas were 
selected from the ship schematics of the World Dream cruise ship, presented in Section 2, that was 
provided by the partners of the HS4U project. In addition to the two adjacent eating areas examined 
in Subsection 5.1.1, four nearby rooms were selected. Specifically, a bar area (𝑒3), a lounge area 
(𝑒4), a public toilet (𝑒5) and a cabin (𝑒଺) were selected (Figure 38). These areas were selected due 
to their proximity to each other and to further examine the RA capabilities of the system on different 
types of spaces, including vessel’s low-risk public spaces (Subsection 3.4.3), public toilets and 
cabins (Subsection 3.4.6) in accord with the simulated scenarios defined in Subsection 3.4, as well 
as the empirical data provided in Figures 7-9. 

 

Figure 38 Overview of the rooms, 𝑒ଵ, 𝑒ଶ, 𝑒ଷ, 𝑒ସ, 𝑒ହ, 𝑒଺, that were selected from Deck 8 of the provided ship 
schematics for multi-space RA. 

In this scenario, we consider that an infectious passenger travels through the monitored 
environments (𝑒1 − 𝑒6). The infectious passenger has symptoms of an airborne infection, i.e., 
coughing and fever, that are classified as COVID-19 by the data analysis module and the DNA/RNA 
sensors in the HVAC system. The RA system assesses the risk of COVID-19 transmission for each 
of them and the total risk for all the activated environments (Figure 39). 
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Figure 39 Overview of the RA workflow for the examined multiple-spaces scenario. 

Similarly to the experiments conducted in Subsections 5.1.1 and 5.1.2, a fuzzy rule-based 
system was created, based on the characteristics of the examined monitored environments. Aiming 
to perform the disease transmission risk assessment, the following risk factors were identified in the 
literature: airflow rate, coughs, maximum body temperature, exposure time, number of people in a 
room, average distance of people in a room, number of people wearing masks and number of 
vaccinated people.  

Experimental Cases 

For each monitored environment a so-called sub-scenario was considered. This sub-
scenario similar to the experiments in Subsections 5.1.1 and 5.1.2 represent a combination of risk 
factor values, representing a disease transmission event within each monitored environment. Then 
the risk predicted by the system for each sub-scenario was used to calculate the total risk of COVID-
19 transmission using the average operator in Eq. (2). In the experiments, combinations of the risk 
factors were used to create RA sub-scenarios for each monitored environment. The system was 
tasked to assess the risk of disease transmission for each of these sub-scenarios and was validated 
using the Vadere ABM framework. The accuracy of the system was 84.2% for these experiments. 

Representative results of these experiments can be observed in Figure 40, where the predicted risk 
for each monitored environment and the total risk are presented. The colors green, orange, and 
yellow denote low, medium, and high-risk levels, respectively. As can be observed, the fuzzy rule-
based system agrees with the ABM, and the total risk predicted for this scenario is medium.  
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Figure 40 Result of the experiments for RA of multiple spaces with a) Presenting the predicted and ABM 
risks for the examined scenario and b) Presenting a visualization of the workflow for predicting total risk. 

Risk Mitigation 

Based on the inferred risk level, the system proposes a set of actuations to mitigate the risk of 
transmission (Figure 41). 

 

Figure 41 Risk mitigation actions proposed by the system. 

Considering that the room-level actuations are implemented, another set of experiments were 
conducted to quantify their effect. In these experiments, all passengers wear masks, follow a strict 
social distance policy of 2 m and the maximum allowed passengers in each environment e are set 
as equal to 75% of the capacity of the room. Based on Table 22, these actuations resulted in a low 
total risk, further highlighting the advantages of the proposed system. In detail, the overall relative 
risk reduction when the risk mitigation actions were applied was ~30%. 
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Table 22 Comparison of predicted risk of transmission with and without actuations implemented. 

 

 

 SIMULATION MODULE 

The Simulation Module is considered to be a complementary module to the RA Decision-Making 
module. For the purposes of this project, three different disease transmission mechanics were 
considered, namely airborne, waterborne, and surface.  

The Vadere ABM framework is utilized to simulate the transmission mechanics of airborne 
diseases, through a dedicated peer-reviewed airborne disease transmission model. Apart from a 
complementary module, the airborne disease simulation tool was employed as a means to validate 
the RA models described in Subsections 5.1.1 and 5.1.2. This way the generated RA models are 
validated based on situations that approximate real-life scenarios, and the employed ABM framework 
can further be used to enhance the RA process. Representative simulation cases based on the 
examined scenarios are presented in the following Subsections 5.1.1 and 5.1.2. A passenger is 
regarded as infected when they have absorbed more than the minimum infectious dose, i.e., 1000 
virus particles. The infectious passenger is denoted with red color, the susceptible with blue and the 
exposed individuals with varying shades of purple. An increased degree of exposure corresponds to 
a darker shade of purple.  

 Eating Area  

Airborne disease transmission simulations 

Snapshots of the ABM simulations for Case 5 (Table 10 & Table 11) are depicted in Figure 42. 
Healthy individuals are denoted with blue, exposed with purple, and infectious with red. Based on 
these visualizations, It can be derived that a higher population density (Restaurant 1) is associated 
with increased exposure of healthy individuals resulting in more infections. In addition, the high 
number of coughs identified by the smart sensors result in an increased risk of disease transmission 
for both monitored environments despite that Restaurant 2 (left area) has a lower population density.  
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Figure 42 Result of the simulated scenarios for Case 5 (Table 10 & Table 11). 

 Vessel’s other high-risk public spaces  

Airborne disease transmission simulations 

Snapshots of the ABM simulations for Cases 2 and 6 (Table 17) are depicted in Figures 43 & 44. In 
addition to the examined infectious, susceptible, and exposed passengers, yellow circles are 
designed to represent the probable spread of emitted droplets deriving from a cough. These circles 
are associated with the Contact Distance risk factor and are utilized to demonstrate its correlation 
with the spread of disease. From observing Figure 44, it can be derived that closer interaction 
between infected and healthy individuals is more probable in cases with a high number of 
passengers inside the indoor area. 

 

Figure 43 Initial setup of the simulated scenarios for a) Case 2 and b) Case 6 (Table 17). 
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Figure 44 Result of the simulated scenarios for a) Case 2, and b) Case 6 (Table 17). 

 Public Swimming Pool Area  

Waterborne disease transmission simulations 

For the simulations related to waterborne disease transmission a dose-response model was 
combined with an agent-based approach. The simulations were aimed at examining the transmission 
of norovirus in the swimming pool scenario. Each passenger was treated as an agent that was 
exposed to norovirus based on the Wells-Rilley dose-response model (Arav et al., 2021). 

The minimum infectious dose is set to 18 particles for norovirus (Hall, 2012) and the exposure 
dose 𝐷 is calculated based on (Pintar et al., 2010). A mapping between available information utilized 
by the Simulation Module and the parameters used in (Pintar et al., 2010) can be observed in Table 
23.  

Table 23 Mapping of the information obtain by the system with the waterborne RA ABM model parameters. 

 

The experiments considered the asymptomatic case of a norovirus passenger in the 
swimming pool as examined in Subsection 5.1.4. Considering that a person has 0.14 g of fecal 
matter in their body while swimming, 𝑀௙ was set to 0.14 g (Paranthaman et al., 2018) and 𝐶ை to 108 

virus particles per g of fecal matter (Hall, 2012). In addition, the volume of the pool was calculated 
based on the characteristics of the swimming pool in Figure 37 (Subsection 5.1.4). The average 
water consumption of water (mL/min) was defined based on (Schets et al., 2011) and was set as 
0.64 mL/min for children and 0.43 mL/min for adults. These findings were then used to set 𝑉 
depending on the average age in each case scenario. Specifically, for age above 16 the 𝑉 =  0.43 
corresponding to adults was used, whereas for age lower than 16 the 𝑉 =  0.64 corresponding to 
children. 
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Several cases were examined for the cruise ship swimming pool that was presented in Figure 37. 
These results can be observed in Table 24, where Riskf corresponds to the risk assessment of the 
biomedical RA model described in Subsection 5.1.4 and RiskABM corresponds to the calculated risk 
of the agent-based dose-response model. Based on the findings in Table 24, the results of the fuzzy 
rule-based RA model are similar to the ones of the AMB model. In addition, the median age of 
exposed passengers and the exposure time are important risk factors for both models examined. In 
Case 4, the confidence of the decision-making module is low. By using the output of the waterborne 
ABM, the confidence of the RA process is increased, and the risk is considered medium. 

Table 24 Calculated risk of the agent-based dose-response model. 

 

 CASE STUDY ON CELESTYAL DISCOVERY 

 

Figure 45 Overview of the selected eating area from Deck 8 of the Celestyal Discovery. 

The RA system that was created from the experiments conducted in Subsection 5.1.5 was also used 
in a case study on the Celestyal Discovery. In these experiments an eating area in Deck 8 was 
selected (Figure 45). These areas were considered as monitored environments and appropriate 
fuzzy sets were created based on their characteristics, i.e., surface area, max capacity, airflow rate. 
These characteristics were based on the ship schematics and the air-filtration and ventilation system 
schematics provided in Subsection 2. According to air-filtration and ventilation system schematics 
the average airflow rate of the room is set to 4000 m3/h, which is classified as high according to our 
analysis. In this scenario, the adherence of passengers to hygienic guidelines is low. Only a small 
portion of passengers is considered vaccinated with the newest covid vaccine that provides efficient 
protection not new variants of COVID-19. The scope of these experiments is to present a use case 
but also try to bridge our research with CDF as an example of how our RA system could be used to 
optimize the design of the rooms in a ship to minimize risk. 
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In these experiments, the infectious passenger is coughing inside the room with a detected body 
temperature of 38.0°C for 120 min, while the environment is operating at full capacity, i.e., number 
of passengers are equal to maximum capacity. The risk of disease was then calculated, and two 
additional experiments were conducted to determine the effect of reduced occupancy and calibration 
of the airflow rate to an optimal value, i.e., 3000 m3/h or 3 ACH. As can be observed in Table 25, the 
risk of disease transmission is high even for a medium number of coughs detected. Furthermore, an 
optimal airflow rate combined with a reduced occupancy equal to half of the maximum capacity 
seems to reduce the risk of disease transmission to a low risk level. This can be quantified as an up 
to 32% relative risk decrease when an optimal airflow rate is implemented and a reduced capacity 
equal to 50% of the max capacity is enforced. 

Table 25 Experiments conducted in an eating area of the Celestyal Discovery. 

 

 

 DISCUSSION  

In this deliverable, models, methodologies and frameworks were investigated, studied and 
developed with the aim of calculating the risk of disease transmission in indoor spaces of cruise 
ships. In the case of cruise ships, outbreaks are frequently associated with either airborne diseases, 
e.g., COVID-19 or waterborne diseases, e.g., gastrointestinal diseases. During outbreaks, cruise 
ships are often quarantined until the source is identified and the spread is controlled. As a result, 
modelling and predicting the evolution of disease outbreaks in closed environments is crucial for 
effective mitigation. Considering the need for short-term disease prediction, novel risk assessment 
systems designed to monitor and control the spread of diseases on cruise ships were proposed. 

Analyzing signals from various sensors can offer valuable insights into the spread of 
infectious diseases in enclosed environments. By interpreting the data from these analyses, decision 
support systems can contribute to perform risk assessment of the disease spread aiming at its 
mitigation. In the context of the HS4U project, several types of sensors have been integrated into 
the smart ship design. These sensors were selected based on the valuable information they provide 
to the RA model. Audio sensors, for example, can capture vital information related to symptomatic 
passengers, such as using microphones to detect coughing in public areas on the cruise ship. 
Furthermore, pathogen detection sensors for air and water—referred to as air DNA/RNA sensors 
and water DNA/RNA sensors—can be incorporated into the HVAC and blackwater systems, or/and 
public restrooms, to identify pathogens in wastewater, such as norovirus. These sensors can also 
be placed in the ship's swimming pools and paired with chlorine level sensors. This combination 
helps monitor the risk of disease outbreaks, especially in scenarios where low chlorine levels 
coincide with the presence of highly contagious pathogens like norovirus. Additionally, monitoring 
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passengers' body temperatures in public areas can be important for assessing disease transmission 
risk. Thermal camera sensors integrated into the smart ship can help identify passengers showing 
signs of fever. RFID sensors are capable of providing extra data for disease transmission risk 
assessment, especially when symptoms are detected in monitored areas. These sensors track the 
number of passengers in a room and offer personalized data that can assist the RA process, such 
as identifying contact with infected individuals. The proposed approaches utilize information derived 
from sensors, aiming to perform risk assessment of the diseases. 

A cruise ship typically has multiple decks with various areas accessible to passengers, such 
as cabin corridors, lounges with seating areas, shops, and outdoor spaces, such as swimming pools. 
The risk of infectious disease transmission can differ across these spaces; for instance, bathrooms 
and restrooms are likely to pose a higher risk than open areas. In this project, several scenarios 
were selected, including the movement of infectious passengers in high- and low-risk areas, under 
different conditions, e.g., with different ventilation settings, number of co-passengers in the room, 
and symptoms of disease. In order to perform the risk assessment, the process starts with 
monitoring, where sensors detect and identify pathogens on the ship. The data collected by these 
sensors, together with information from the ship’s information system and information extracted from 
the literature and web sources, are then analyzed by our proposed systems. Based on the analysis, 
the introduced systems assess the risk of disease transmission. Depending on the estimated risk, 
the crew is notified and is required to take action to prevent the spread of the virus, in accordance 
with instructions and actuations given by the system. 

Considering the above, in this chapter, regarding airborne disease outbreaks on ships, a 
knowledge-based RA system was proposed aimed at preventing COVID-19. Unlike previous studies, 
the proposed system incorporates a variety of smart sensors, such as thermal cameras, to detect 
early symptoms of diseases across different indoor areas of the ship and assess the risk of disease 
transmission. These sensors comply with the “privacy by design” policy, ensuring that passengers 
consented to being monitored in both public and private areas of the ship, including cabins. The RA 
process was facilitated by a decision-making module, specifically a fuzzy inference system, which is 
built on identified early indicators and risk factors for the study case, such as COVID-19. The 
proposed system leverages the smart ship design for early detection of infectious diseases and 
proposes a framework of actions for controlling outbreaks. Furthermore, in this context, a fuzzy rule-
based decision-making module was developed based on an analysis of risk factors and early 
indicators of airborne infectious diseases, including coughing and fever, incorporating expert 
knowledge and information from relevant literature. The RA process within the decision-making 
module generated a risk index that was used to recommend appropriate control measures to the 
ship’s crew. experiments conducted in multiple areas of representative cruise ships with various 
characteristics demonstrated the effectiveness of the system in real-world scenarios. Based on the 
results, the following conclusions were drawn regarding the risk factors and their impact on the risk 
of COVID-19 transmission: 

 The risk of disease transmission increases as the number of passengers in a room increases, 
especially when the room capacity is exceeded. This highlights the importance of managing 
passengers’ density to reduce the spread of infectious diseases. 

 The efficient operation of the HVAC system plays a critical role in minimizing the risk of 
disease transmission. Proper configuration and maintenance of the system can significantly 
reduce the spread of pathogens, highlighting the need for optimized environmental control 
measures. 
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 The frequency of symptoms, such as coughing, is directly associated with an increased risk 
of disease transmission. This highlights the need for symptom monitoring and interventions 
to limit exposure to potentially infectious individuals. 

 Elevated body temperatures are indicative of a higher risk of disease spread, further 
reinforcing the importance of monitoring passenger health as a means of early detection and 
mitigation. 

  The effect of the masks and the vaccination has a great impact on the transmission of the 
disease, as it reduces the risk. 

The proposed approach for assessing airborne transmission risk aligns with the results derived from 
the ABM framework, demonstrating high confidence in most cases and ensuring the reliability of the 
outputs. However, in some cases, deviations may arise due to the simulation of passenger dynamics 
in the ABM framework, which are not fully captured by the fuzzy rules.  

Additional experiments were conducted to examine the risk of waterborne disease transmission of 
norovirus. Based on the experiments conducted in this chapter, it was concluded that the risk of 
norovirus transmission is influenced by the following factors:  

 Chlorine level: As its level increases, the risk of transmission decreases. 

 Age of individual: The increase in the age of individuals is associated with a decrease in the 
transmission of the disease. 

 Exposure time: The longer the passengers remain in contaminated water, the greater the 
chance of them getting sick. 

 Occupancy: The increase in the number of passengers causes an increase in the risk of 
transmission of the virus. 

Experiments were conducted to examine the risk of fomite-mediated disease transmission for 
COVID-19 and norovirus. Based on the experiments conducted in this chapter, it was concluded 
that: 

 Norovirus is more infectious than COVID-19 in terms of fomite-mediated transmission routes, 
which aligns with the literature. 

 Risk of fomite-mediated transmission highly depends on the number of passengers that touch 
the contaminated surface. 

To this end, this chapter introduced a smart sensor-based risk assessment system for disease 
transmission on cruise ships, demonstrating its effectiveness in real-world scenarios. Future work 
includes enhancing the RA process with deep learning methods and improving sensor fusion for 
real-time pathogen detection. Integrating passenger behavior modelling and social dynamics could 
also refine risk estimates, while privacy-preserving techniques like federated learning would ensure 
ethical compliance. These advancements will strengthen disease mitigation strategies in maritime 
and other enclosed environments. Overall, the proposed biomedical RA system paves the way for 
better outbreak preparedness, proactive disease mitigation, and safer environments in maritime and 
other enclosed settings. 
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 CONCLUSIONS 

In this document, which is a deliverable of the HS4U project describing the work performed and the 
results obtained by the research performed in the context of Task 3.2 (research and development of 
risk assessment methodologies, models and algorithms), a smart sensor-based biomedical risk 
assessment model was developed for disease transmission on cruise ships. The proposed 
biomedical risk assessment model integrates various sensors—including thermal cameras, audio 
sensors, and pathogen detection systems—to monitor early indicators of infectious diseases and 
assess real-time risk through a fuzzy inference system. To evaluate disease transmission dynamics 
for COVID-19 and norovirus, a structured mapping process linked ship infrastructural components—
public areas, cabins, ventilation, and sewage systems—to disease spread, ensuring accurate risk 
estimation. Based on this mapping, the biomedical risk assessment model was evaluated through 
experiments in several representative simulated scenarios, covering eating areas, vessel’s other 
high-risk areas (e.g., bars), low-risk public spaces (e.g., lounges), cabins, public toilets, outdoor 
swimming pools, and combination of these spaces for short-term COVID-19 and norovirus 
transmission. The biomedical risk assessment model was further enhanced by incorporating results 
from Computational Fluid Dynamics and Agent-Based Model simulations that were used to model 
airborne, waterborne, and surface-mediated transmission, improving the risk assessment process. 
These methods were used to simulate infection spread at a micro-scale, capturing the impact of 
human interactions and environmental factors on disease transmission 

Evaluation of the model’s performance against validated ABMs, confirmed that our approach reliably 
estimates transmission risks across different environments with an accuracy reaching up to 84%. 
The results demonstrated that the biomedical risk assessment model can effectively assess and 
mitigate disease spread by analyzing sensor data and providing actionable recommendations to the 
crew. The system is implemented in modular components, making it adaptable to different ship 
configurations and sensor setups. Within the HS4U project, this technology will be integrated into 
the CDF framework, ensuring its applicability for smart ship design and future maritime health 
monitoring initiatives. 

Key Findings: 

 The proposed biomedical risk assessment model accurately evaluates and mitigates 
infection spread using sensor data and a fuzzy rule-based decision-making process. 

 Several disease transmission scenarios were simulated covering a wide range of ship 
infrastructural components that were selected based on available schematics, empirical data, 
and insights from project partners. 

 Computational Fluid Dynamics and Agent-Based Model simulations were used to simulate 
airborne, waterborne, and surface-mediated infection transmission at a micro-scale, 
enhancing the confidence of the risk assessment process. 

 Airborne transmission is significantly influenced by passenger density, HVAC efficiency, 
symptom monitoring, and protective measures such as masks and vaccination. 

 Waterborne transmission is affected by chlorine levels, exposure duration, and occupancy.  

 Norovirus shows a higher risk of fomite-mediated transmission compared to COVID-19. 
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 The system aligns closely with results from the validated ABM, confirming its accuracy 
(~84%) in real-world scenarios. 

 The risk mitigation measures proposed by the biomedical RA model were capable of reducing 
the risk of disease transmission by 30% on average.  

 The framework is adaptable and can be deployed on various ship types with different sensor 
configurations. 

 Research outputs from this work have led to 10 publications in journal and conferences, 
demonstrating its impact on the field. 

Based on these findings, it can be inferred that the use of a sensor-based biomedical RA model such 
as the one proposed in this deliverable can provide valuable information to ship operators. This 
information could be used to limit the spread of disease onboard. In addition, ship operators are 
advised to adopt the risk-level based mitigation measures (suggested actuations) proposed in this 
study, which enhance the established safeguards already in place. These measures have been 
proven effective in reducing the risk of disease transmission and allow for the gradual implementation 
of stricter policies based on the severity of the epidemic outbreak. Moreover, ship manufacturers are 
encouraged to incorporate smart sensors (such as those considered in this deliverable and 
investigated in D3.1) in the ship design process in order to provide timely detection of infectious 
diseases onboard. These sensors could also provide valuable feedback and improve the response 
of the crew. Furthermore, manufacturers are advised to consider the results of the experiments 
conducted in this deliverable which defined an optimal airflow rate configuration of 3 air changes per 
hour (ACH) for indoor areas of cruise ships. The proposed biomedical RA model including its 
simulation modules could be utilized by ship manufacturers to optimize the design of indoor areas of 
the ship, e.g., define optimal density to limit disease spread even in high-risk scenarios. 

As part of the HS4U project, the system will be integrated into the CDF for enhanced risk assessment 
capabilities. Considering the generality of the proposed risk assessment model, its impact may 
extend to future applications in the tourist industry, e.g., hotels and restaurants, as well as in 
healthcare units, e.g., clinics and hospitals. 
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