=

=

Risk assessment
methodologies, models

N the European Union

>
O
©
@D
o
=
=
58
L
fn

and algorithms




D3.2 — Risk assessment methodologies, models and algorithms ——
Version 2.0 — Date 10.03.2025

DOCUMENT SHEET

HS4U

Healthy Ship 4U

Horizon Europe

HORIZON-CL5-2021-D6-01-12

HORIZON-Research and Innovation Actions

101069937

1 September 2022

36 months

LEGAL NOTICE

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Climate, Infrastructure and Environment Executive
Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

This deliverable contains information on HS4U core activities, findings, and outcomes. The information in this deliverable
is provided “as is”, and no guarantee is given that the information is fit for any particular purpose. The users use the
information at their sole risk and liability.

© HS4U Consortium, 2023
Reproduction is authorised provided the source is acknowledged.

Funded by Page 2
the European Union



D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

DOCUMENT INFORMATION

D3.2
Risk assessment methodologies, models and algorithms

UTH

w

T3.1,T2.2,T2.3,T3.3,T4.1, T4.2

R — Document, report

EPSILON, NTUA

28.02.2025

UTH, UNIC, HPI

DISSEMINATION LEVEL

Funded by
the European Union

- Public X
- Sensitive, limited under the conditions of the Grant Agreement
- Restricted to other programme participants (including the EC)
- Restricted to a group specified by the consortium (including the EC)
- Confidential, only for members of the consortium (including the EC)
Page 3



D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

Funded by Page 4
the European Union



D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

DOCUMENT HISTORY

0.1 01/07/2023 = Structure, Introduction, etc. UTH

0.2 08/12/2023 Available ship data, Closed-loop model, Risk UTH
assessment methods, Simulation methods and
platforms, Scenarios etc.

0.3 10/04/2024 Empirical data, Risk assessment methods, UTH, HPI, HYDRUS
Simulation methods, Experiments

1.0 31/08/2024  Air filtration, ventilation and sewage system UTH
schematics, Risk assessment methods, Simulation
methods, Experiments

1.5 15/02/2025 = Multiple space risk assessment, Actuations, Risk UTH. UNIC, AETHON,
mitigation, Additional experiments and GEU, HPI

contributions from partners, Conclusions

2.0 10/03/2025 @ Final version after review UTH, EPSILON, NTUA

Funded by Page 5
the European Union



D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

Funded by Page 6
the European Union



D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

TABLE OF CONTENTS

DOCUMENT INFORMATION........ciieii s ssss s mmmnn s 3
DISSEMINATION LEVEL........iiii s smns s 3
DOCUMENT HISTORY ... sssssss s ssss s s mmmnn s s 5
TABLE OF CONTENTS ... ssss s mmms e 7
LIST OF FIGURES ... 9
LIST OF TABLES. ...t 11
ABBREVIATIONS ... s e 12
PUBLISHABLE SUMMARY ... ssssss s ssssss s s s 14
FOREWORD ...t s smsss s smms s e e e mmmn e n e e e e e e 15
1. INTRODUCTION ...t nssssssssss s s s s 16
2. SHIP RELATED DATA ..ot sssssssss s sssss s s s snns 18
2.1 Ship SchematiCs ... e e 18

A~ 1 - 0 1= o 22

2.3 Empirical risk levels of compartment............ccccereeecccciiiiiieeeee s 24

2.4 Air-filtration, ventilation and sewage system .........cccccccoirrirnciiinnene. 26

3. BIOMEDICAL MODELING IN PASSENGER SHIP...........ccccviimmmrmnnerninnnns 31
3.1 DECISION MAKING FOR RISK ASSESSMENT ..........cccceciinmmmrrreennnns 35

I s R

RiSK Of iNfECHION ..o 37

Risk of long-term disease transSmisSion..........cccccccii s 44
Classification of detected symptoms...........cccciiiiiiiii 46

3.1.2 General Framework of the Biomedical Risk Assessment Model ............... 47

313 Pecislion-Making Module.......cuiuuavisumnsiimaasmiimm it 48
3:1:4 Simulation MOEDRIe ......uiisaiimimiiuiisiaiisisasiiiaiisasi s 50
3.2 SIMULATION OF DISEASE SPREAD.......cocttmmeeecsineeernsnnmnssssnse s 50
3:2:1 Alrborme Transmisslon ModelIng........ciusmisisaisiiminmvivemsinsissiissisaszsimiss 50

3.2.2 Waterborne Transmission Modelling.........ccoccuamimnmsraremsmsmsmsnsmsnsneninensnsnenseenes 54

Funded by Page 7
the European Union




D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

3.2.3 Surface Transmission Modelling........cccccciieiieiiiiieineiiiesie e eressssseeeesesnsans

3.3 SIMULATION-BASED ANALYSIS OF INFECTION TRANSMISSION 56

3.3.1 Analysis and Modelling of accessible areas ...........ccccervemimrireniininnennneennennen 56
3:3.2 SINUlation PIaOINS ...cimiisiimasimiiiiim e diiss 56
3.4 SIMULATED SCENARIOS........coo e 59
Fd:| BAHNG ATOD .oiieissmonsmim s e s ARk n A e 59
3.4.2 Vessel’s other high-risk public Spaces...........cccsriiiriiisenerenininsnennneneneninenenen 60
3.4.3 Vessel’'s low-risk publiC SPACEeS ......cccceiiirmiriiirrerniseerrnssrrsanssrsennsssssesanssssnnns 61
3:4:4 Public SWimming Pool ..o it sy 61
AA5 PG COMIBE oo i i s o S sk e s s 62
3.4.6 SHID Cabin ..iviinnrunnmsisiminisssimssiiaiinssssimss s st s s asasta i nsesasinas 63
4., COMPUTATIONAL MODELLING, SIMULATION, ANALYSIS, AND ASSESSMENT ........... 63
4.1 Computational Fluid Dynamics for airborne pathogen transmission
64
4.2 Unsupervised machine learning for predicting airborne pathogen
droplet diSPersion ... 68
5. EXPERIMENTS & RESULTS. ... s rsnmmsss e 70
5.1 DECISION-MAKING MODULE ........cooiieiieirrerrrrrmessss e e e 70
ST BHHNG ATOD o oismunivmismiii i s s s ks e e A sasas 70
Analysis of Risk Factors related to airborne disease transmission.................... 71
FUZZY RUIES....ceeeeiii it s s e e 74
Experimental Cases ... 80
Effect of masks and vaccination on airborne disease transmission.................. 82
Fuzzy Rules with masks and vaccination.............ccoooii e 82
Experimental cases with masks and vaccination ..............cccoooiiimimiccciiiininineneees 94
5.1.2 Vessel’s other high-risk public SPaces.........c..ccccnisiuremsisssanersssssnsresssseenes 95
Analysis of RiSk faCtors..........cccccii s 95
FUZZY RUIES..... 96
Experimental Cases ........cociiiiiieiiiiii i irrcece e ene s s s s s s s e s r e nn e s renn e r e nnnn s 105
57,3 PUBHE oML ..ol s 107

Funded by Page 8
the European Union



D3.2 — Risk assessment methodologies, models and algorithms £
—

Version 2.0 — Date 10.03.2025 ﬁ

Dose-response model combined with surface-mediated disease transmission

SIMUIALIONS ...cceeeeeiiiiieii et s s s s s s s ssanssnannanrannnnnnannnnnnnns 108
Experimental Cases ........cociiiiiieiiiiii s s rne s s s s s s e s rrnn e e enn e e e nnna s 109

5.1:4 Public SWIMMING Pool Area «.iuivnisimisisiininmvsmsiminimiass s 109

Analysis of risk factors related to waterborne disease transmission .............. 110

FUZZY RUIES......eeeeeee e e s s e e mn s mm s e e e e e e mmn e e e e 110
Experimental Cases ........cociiiiiieiiiiii i rrriece e rne s e s s s e sms e e e nn s s e enn e e e nnna s 113

5.1.5 Risk assessment of COVID-19 for multiple spaces........cccceeevrerierrrerarannsnss 114
Experimental Cases ... 115

Risk Mitigation..........cooiieieii 116

5.2 SIMULATION MODULE.........oo e r s e r s s e s e e e 117

52.1 Eaing AP civinsiicus i s i s s e 117

Airborne disease transmission simulations........ccccccccceiiiiiiimmiccc 117

5.2.2 Vessel’s other high-risk public spaces.......c.ccociiiriiiiiiiiccrcceeee e 118

Airborne disease transmission simulations.............cccccccii e, 118

5223 Public Swimming Pool ArBa ......uusiinnniiimisimisrsiiasmmiismisiiiimimne 119
Waterborne disease transmission simulations...........cccccuuemmmmeemnnmnennennennnnnnnnnn. 119

53 CASE STUDY ON CELESTYAL DISCOVERY.....ccceeceiiiiiirrrrnrennnnnees 120

6. DISCUSSION ... s 121
7. CONCLUSIONS ... s 124
8. BIBLIOGRAPHY ... s 126

LIST OF FIGURES

Figure 1. Ship schematics for Deck 13,15,16,17 of the World Dream cruise ship..............ccccueeee.. 19
Figure 2: Ship schematics for Deck 7-9 of the World Dream cruise ship. ...........ccoiiiiiiiiiiiiiieiiinnne. 19
Figure 3 Overview of the Celestyal Discovery Cruise Ship. ... 20
Figure 4 Detailed schematics of Decks 1-3 of Celestyal Discovery cruise ship. .........cccccccvvvvinnenn. 20
Figure 5 Detailed schematics of Decks 4-7 of Celestyal Discovery cruise ship. ...........cccceevinnnnen. 21
Figure 6 Detailed schematics of Decks 8-11 of Celestyal Discovery cruise ship. ..........ccccccvvvnnnnn. 21
Figure 7: Risk levels of ship compartments provided by partners of the HS4U project.. ................ 25
Figure 8: Empirical risk levels of ship compartments based on low, medium and high exposure risk.
..................................................................................................................................................... 25

Funded by Page 9
the European Union



D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

Figure 9: Empirical risk levels of ship compartments based on a spectrum of category levels from
[OW tO high (GreeN 0 FEA). ....eeeiiiiieii et e et e e e e e e e eeaa e s 25

Figure 10 Schematics of the HVAC system for Decks 3-5 of the Celestyal Discovery cruise ship. 26
Figure 11 Schematics of the HVAC system for Decks 6-9 of the Celestyal Discovery cruise ship. 27
Figure 12 Schematics of the HVAC system for Decks 10-12 of the Celestyal Discovery cruise ship.

..................................................................................................................................................... 27
Figure 13 Schematics of the blackwater sewage system for Decks 1-2 of the Celestyal Discovery

Lo LY== o 1 oSS 28
Figure 14 Schematics of the blackwater sewage system for Decks 3-5 of the Celestyal Discovery
(ol U [ST=TE ] o TR OPRO TP 28
Figure 15 Schematics of the blackwater sewage system for Decks 6-9 of the Celestyal Discovery

Lo LY== o 1 oS 29
Figure 16 Schematics of the blackwater sewage system for Decks 10-11 of the Celestyal
DISCOVEIY CrUISE SNIP .ceiiiiiti ettt e e e e ettt e e e e e e e e ee b s e e e e e e eeaesaananas 29
Figure 17 Overview of the greywater pipeline system of the Celestyal Discovery cruise ship........ 30
Figure 18: Generic closed-loop model for disease control in passenger ships. (a) Risk assessment
node. (b) Multi-node riSk @SSESSMENT...........ooiiiiiiiiii e e 32
Figure 19: Example implementations of the closed-loop model for different ship spaces. (a) Cabin.
(b) Cabin COrTIAOr. (C) LOUNGE .....eceiiiiiiiiieie ettt e e e e ettt e e e e e e e e e enan e e eeaaeens 34
Figure 20 Example of the RA node's workflow for a cabin scenario. ............ccccccvvviieiiiiiiiiieieiinnnnn. 47
Figure 21 Example of a fuzzy knowledge-based System ............ccoooiiiiiiiiii e, 48
Figure 22 Overview of the Decision-Making module proCess. ..........cc.uuueeiiiieiiiiiiiiiiie e, 48
Figure 23: The implemented object-oriented ship structure scheme..............cccevviieiiiiiiiiieiiiiinnen. 56
Figure 24: Two simulated scenarios of disease spread in a cabin and eating room. Infected agents
With red, NEaAIth WIth DIUEG. ... ... oo e et e e et e e e e e e e e e e e e e neeanas 59
Figure 25: lllustration of a typical passenger cabin room onboard a cruise ship, illustrating the
scenario and test case configuration considered. ...........ccooooiiiiiiiiiiiiii e 64

Figure 26: Sketch illustrating the inflow angle of the cooled air from the a/c unit considered in the
present study: (a) 45- and (b) 75-degree angle. Contour surface plot of the air velocity magnitude.
Red colour indicates the maximum velocity of the air expelled by the a/c unit (1.14 m/s or 11 ACH).

Figure 27: Time plot of the total saliva mass of the airborne respiratory droplets located 1.4 m
above the floor, grouped into separate size ranges depending on the diameter of the droplets, for
(a) 45- and (b) 75-degree a/C iNlets angle. ........ccooeeiiiiiiiiiiie e e 66
Figure 28: Sketch illustrating a typical corridor on a cruise ship outside passenger cabin rooms,
showcasing the dimensions of the computational domain and the position of the two coughs. ..... 66
Figure 29: Total mass of airborne droplets situated 1.5 m above ground in the corridor, plotted in
groups of particle sizes by diameter for (a) a weak cough, and (b) a strong cough. ...................... 67
Figure 30: Trajectories for particles during 15 s after coughing for (a) a strong cough with no draft,
and also with an incoming draft of 1 m/s for (b) a weak cough, 6 m/s, and (c) a strong cough 12
m/s. Left column (red particles) for airborne respiratory droplets with a diameter between 50-100

pMm, Right column (green droplets) for particles with a diameter between 150-200 pm................. 68
Figure 31 Topography of the two examined restaurant areas e1 and ez residing in Deck 08,
highlighted With Fed. ........ooiiiiii e 70

Funded by Page 10
the European Union



D3.2 — Risk assessment methodologies, models and algorithms £
Version 2.0 — Date 10.03.2025 ——13

Figure 32 Fuzzy sets for the input factors: (a) time; (b) number of coughs; (c)-(d) HVAC airflow; (e)-

(f) number of passengers; (g) body temperature; (h) risk of COVID-19 transmission. ................... 74
Figure 33 Overview of the generated fuzzy rules for risk assessment of COVID-19 disease spread.
..................................................................................................................................................... 80
Figure 34 Topography of the two examined bar areas e1 and e residing in Deck 08, highlighted
1771 T = PR 95
Figure 35 TR in a room depending on the distance between r and d.. For the cases (a) 2 -r < 1,

(D) 27 =1, N0 (€) 27 > L. oottt e e e e 96
Figure 36 Representative schematic of a public toilet with pathogens denoted as yellow circles. 108
Figure 37 Schematics of the selected swimming pool on Deck 16, highlighted with red............... 113
Figure 38 Overview of the rooms, el, e2, €3, e4, e5, e6, that were selected from Deck 8 of the
provided ship schematics for multi-space RA. .........cooiiiiiie e 114
Figure 39 Overview of the RA workflow for the examined multiple-spaces scenario. .................. 115

Figure 40 Result of the experiments for RA of multiple spaces with a) Presenting the predicted and
ABM risks for the examined scenario and b) Presenting a visualization of the workflow for

PrediCting total FISK. ......oiiiiiiiiiii i 116
Figure 41 Risk mitigation actions proposed by the system. ... 116
Figure 42 Result of the simulated scenarios for Case 5 (Table 10 & Table 11). ..cccccovvveiiiiivinnnnn. 118
Figure 43 Initial setup of the simulated scenarios for a) Case 2 and b) Case 6 (Table 17). ......... 118
Figure 44 Result of the simulated scenarios for a) Case 2, and b) Case 6 (Table 17)................. 119
Figure 45 Overview of the selected eating area from Deck 8 of the Celestyal Discovery............. 120

LIST OF TABLES

Table 1: Possible sensors (HS4U and beyond)..........oooiiiiiiiiiiaiiiieieeee e 24
Table 2 Probability of a passenger being infected with COVID-19, should one of the following
SYMPLOMS DE AELECIEA. ... . e e 38
Table 3 Probability of a passenger being infected with COVID-19 if one of the following factors is

O C= ST o | N 39
Table 4 Probability of a passenger being infected with Norovirus, should one of the following
SYMPLOMS DE AELECIEA. ... . e e 40
Table 5 Probability of a passenger being infected with Norovirus if one of the following factors is

O C= ST o | N 41
Table 6 Literature-based suggested actuations..............ooooiiiiiiiiii e 49
Table 7 Information provided by each available SeNSOr..........ccoooiiiiiiiiii i 71
Table 8 Fuzzy set for each identified risk factor. ..o 73
Table 9 Correlation of each factor with risk of COVID-19 transmission. ...........ccceeeeeiieieeieeeeeeeenn. 73

Table 10 Input risk factors for risk assessment of COVID-19 transmission for e1/e; eating areas.. 81
Table 11 Risk assessment of COVID-19 transmission for e4/e; eating areas using fuzzy rules. .... 81
Table 12 Experimental cases with enhanced risk factors for e1/€z..........coovvieiiiiiiiiiiiiiciii e, 94

Funded by Page 11
the European Union




D3.2 — Risk assessment methodologies, models and algorithms £

Version 2.0 — Date 10.03.2025 1
Table 13 Risk assessment of COVID-19 transmission using enhanced fuzzy rules. ..................... 94
Table 14 Correlation of risk of COVID-19 transmission with Contact Distance. ............................. 96
Table 15 Fuzzy sets for each risk factor corresponding to e and e; bar areas............................ 106
Table 16 Experimental cases with varying input risk factors for ei/ez bar areas..................c..cc. 106
Table 17 Risk assessment of COVID-19 transmission for e4/e; bar areas using fuzzy rules........ 107
Table 18 Description of each parameter used inthe RA model..........c.ccooieiiiiiiiiiiiiii e 109
Table 19 Experimental cases for surface-based RA.............oooii i 109
Table 20 Correlation of each risk factor with risk of norovirus transmission.............cc.cccc...ooooo 110
Table 21 Input risk factors and RA for various cases in the cruise ship pool. ...........ccccooeeiii 114
Table 22 Comparison of predicted risk of transmission with and without actuations implemented.
................................................................................................................................................... 117
Table 23 Mapping of the information obtain by the system with the waterborne RA ABM model

[T T = 141 (=T PR 119
Table 24 Calculated risk of the agent-based dose-response model. ..........cccooooiiiiiiiiiiiiieennenee, 120
Table 25 Experiments conducted in an eating area of the Celestyal Discovery..................c.occ.. 121

ABBREVIATIONS

Full Name

Agent-based Model
Collaborative Digital Framework
Computational Fluid Dynamics
Risk Assessment

Unified Modeling Language

Transmission risk

Funded by Page 12
the European Union



D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

Funded by Page 13
the European Union



D3.2 — Risk assessment methodologies, models and algorithms

PUBLISHABLE SUMMARY

Cruise ships are unique closed environments that blend private and public areas, where diverse
populations come together and travel for extended periods. These conditions create an ideal setting
for the spread of infectious diseases, both airborne and waterborne, due to the close proximity of
passengers and the shared facilities on board. To address these challenges, this task developed
risk assessment mathematical models and software components for assessing health hazards on
ships and achieve the functionality of the Collaborative Digital Framework (CDF) proposed in the
scope of the HS4U project.

This task included analyses and modelling of accessible areas such as public spaces, and cabins
using data from HS4U use cases and existing information. Data from pilot partners, including ship
schematics, air filtration, ventilation systems, and sewage systems, was retrieved, and rooms and
equipment were categorized based on their impact on various diseases. A mapping between ship
components and disease spread was defined.

Based on these, a biomedical model was developed to simulate infection transmission in passenger
ships, both indoors and outdoors, estimating and predicting infection risks for short time spans at a
micro-scale. The model integrated various types of equipment—including thermal cameras, audio
sensors, and pathogen detection systems—to monitor early indicators of infectious diseases and
assess real-time risk through a fuzzy inference system. Computational tools were used to model and
predict the spread of microbes through air and water, accounting for real-world measurements of air-
flow characteristics and piping system parameters. These methods simulated infection spread at a
micro-scale, capturing the impact of human interactions and environmental factors on disease
transmission, while enhancing the risk assessment process of the developed biomedical model.

The biomedical model was evaluated through experiments in multiple scenarios of air-, water- and
surface-mediated disease transmission for different infrastructural components of cruise ships. The
results of these experiments demonstrated that the proposed biomedical risk assessment model
effectively and accurately estimates disease transmission risks, while also providing actionable risk
mitigation recommendations to the crew. An additional merit of the model is its modular design that
allows for adaptability to different ship configurations and sensor setups. Consequently, the
technologies developed in this task can be effectively integrated into the CDF framework in accord
with the aim of the HS4U project, while its adaptability ensures that it can be utilized in future maritime
health initiatives.
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FOREWORD

In the context of the research conducted for the implementation of Task 3.2, a biomedical risk
assessment framework for assessing health hazards on ships was developed. This task included (a)
analyses and modelling of accessible areas such as public areas, cabins, and self-checking docks
using evidence-based data from HS4U use cases and existing information, (b) biomedical modelling
in passenger ships to facilitate simulation-based analyses of infection transmission (for indoor and
outdoor areas), and (c) computational modelling, simulation, analysis, and assessment of airborne
and waterborne bacterial and virus spreads through surfaces for their design implications in
evidence-based naval architecture and marine engineering plans. The results of this research have
been published in several peer-reviewed scientific journals and conferences, where more details on
the literature, models, and methods investigated can be found.

Publications

1. Ritos, K., Drikakis, D., & Kokkinakis, I. W. (2023). Virus spreading in cruiser cabin. Physics
Fluids, 35(10), 10.

2. Christakis, N., & Drikakis, D. (2023a). Reducing uncertainty and increasing confidence in
unsupervised learning. Mathematics, 11(14), 14.

3. Christakis, N., & Drikakis, D. (2023b). Unsupervised learning of particles dispersion.
Mathematics, 11(17), 17.

4. Christakis, N., Drikakis, D., Ritos, K., & Kokkinakis, I. W. (2024). Unsupervised machine
learning of virus dispersion indoors. Physics Fluids, 36(1), 1.

5. Ritos, K., Drikakis, D., & Kokkinakis, I. W. (2024). The effects of ventilation conditions on
mitigating airborne virus transmission. Physics Fluids, 36(1), 1.

6. Christakis, N., & Drikakis, D. (2024). On particle dispersion statistics using unsupervised
learning and Gaussian mixture models. Physics  Fluids, 36(9), 9.
https://doi.org/10.1063/5.0229111

7. Triantafyllou, G., Sovatzidi, G., Dimas, G., Kalozoumis, P. G., Drikakis, D., Kokkinakis, 1. W.,
Markakis, I. A., Golna, C., & lakovidis, D. K. (2024). Sensor-based Fuzzy Inference of
COVID-19 Transmission Risk in Cruise Ships. In Proceedings Medical Informatics Europe
(MIE), Public Health and Informatics. 10S Press.

8. Sovatzidi, G., Triantafyllou, G., Dimas, G., Kalozoumis, P. G., Drikakis, D., Kokkinakis, I. W.,
Markakis, I. A., Golna, C., & lakovidis, D. K. (2024). Risk Assessment of COVID-19
Transmission on Cruise Ships Using Fuzzy Rules. IFIP International Conference Artificial
Intelligence Applications Innovations, 336—348.

9. Triantafyllou, G., Kalozoumis, P. G., Cholopoulou, E., & lakovidis, D. K. (2024). Disease
Spread Control in Cruise Ships: Monitoring, Simulation, and Decision Making. In The Blue
Book: Smart sustainable coastal cities and blue growth strategies for marine and maritime
environments (pp. 93—141). Springer.

10. Christakis, N., Drikakis, D., & Kokkinakis, I. W. (2025). Advancing understanding of indoor
conditions using artificial intelligence methods. Physics  Fluids, 37(1), 1.
https://doi.org/10.1063/5.0251749
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1. INTRODUCTION

Cruise ships are closed environments that combine private and public areas, where diverse
populations travel together for several days. Such conditions are considered ideal for the
spread of both airborne and waterborne diseases. A recent example is the Diamond
Princess cruise ship, where after a passenger was tested positive for COVID-19 (SARS-
CoV-2), the passengers and the crew were instructed to quarantine for two weeks. During
that period, there was an extensive spread of the virus throughout the ship, counting 651
cases over 3,711 passengers and crew (Batista et al., 2020). After almost one month, all
passengers and crew disembarked. Notably, 712 (19.2%) were tested positive for COVID-
19, and among them, 331 (46.5%) were found asymptomatic (Moriarty et al., 2020).

In general, disease outbreaks are relatively common in closed environments, such
as cruise ships, nursing homes, hospitals, and college dormitories (Mouchtouri et al., 2020).
In the case of cruise ships, outbreaks are associated with either airborne diseases, e.g.,
COVID-19 or waterborne diseases, e.g., gastrointestinal (Gl) diseases. These are usually
attributed to organisms, such as Salmonella, Shigella, enterotoxigenic Escherichia coli,
influenza virus, and Legionella pneumophila, and, more recently, norovirus and COVID-19
(Hill, 2019; McCarter, 2009). During such outbreaks, cruises often go into quarantine until
the source is isolated and the spread is mitigated. Therefore, modeling and predicting the
progress of disease outbreak in closed environments is of paramount importance for their
mitigation. The success of a modeling approach depends highly on the parameters taken
into consideration, such as social and behavioral factors, as well as parameters related to
the transmission pathways. For the latter, accurate data regarding the transmission through
the air, water, and surfaces are key to the effectiveness and fidelity of a simulation.

Diseases can spread via different transmission modes, including airborne, droplet,
contact, and fecal-oral transmissions (Delikhoon et al., 2021). The most common disease
transmission pathway among individuals is air. An infectious disease, such as COVID-19
can be spread when contact is established between an infected host and a susceptible one.
Peer-to-peer contact modes involve complex interactions of a pathogen with a fluid phase,
e.g., isolated complex fluid droplets or a multiphase cloud of droplets. When an individual
exhales, including coughing or sneezing, micron-sized droplets are formed, which can
transfer airborne pathogens, such as such as viruses (~10—-100 nm), bacteria (~1 ym), and
spores (~1-10 ym) (Bourouiba, 2021). Fine and ultrafine particles (airborne transmission)
can stay suspended for an extended period of time (=2 h) and be transported through simple
diffusion and convection mechanisms as far as 8 m (Delikhoon et al., 2021). These can be
either transmitted directly to other people or be deposited on surfaces and transmitted
indirectly through contact.

Another but less frequent transmission pathway is water. A direct source of infection
is infected potable water, while premise plumbing with non-potable water, e.g., showers,
toilets, and sink faucets, and the water systems associated with it, are common indirect
sources of infection transmission (Carlson et al., 2020). Nevertheless, nowadays extensive
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measures are taken to minimize or even eliminate the occurrence of such cases (Leslie et
al., 2021; Muli et al., 2020). Air bubbles are ubiquitous on water surfaces and are common
in facilities of cruise ships, such as pools and toilets. Bubbles can also cause public health
concerns, since droplets generated from contaminated water may carry infectious payloads
that can lead to airborne disease transmission. Contaminated droplets can be easily
transported over short and long distances by drafts, such as those generated by the heating
ventilation and air-conditioning (HVAC) system. Inhalation of droplets or droplet nuclei
containing bacteria is a recognized route of infectious disease transmission, e.g., outbreaks
of Legionella (Prussin Il et al., 2017), which are attributed to aerosolization from bursting
bubbles. Another source for the waterborne transmission of diseases is the development of
biofilm in the piping systems, especially those with warm water (<50°C). Biofilms develop
on most surfaces in contact with non-sterile water. Pathogens in biofilms do not usually
spread from person-to-person or through direct consumption of the water, but there is
considerable evidence that individuals become ill when exposed to airborne water droplets
that have been seeded by those pathogens. Activities that can lead to their aspiration include
showering and hand washing.

Although viruses, such as SARS-CoV-2, are principally transmitted through person-
to-person contact through droplets produced while talking, coughing, or sneezing,
transmission may also occur through other routes, such as contaminated surfaces.
However, the role that surfaces play on the spread of the disease remains contested. For
example, infective coronavirus has been found to persist on surfaces from 3 h to 28 days,
depending on different environmental factors, e.g., surface material, humidity, and
temperature. Viruses can be transferred from contaminated surfaces to the hand upon
contact and from the hand to the mucous membranes on the face. Nevertheless,
experimental findings reported in the literature support the current perception that
contaminated surfaces are not a primary mode of transmission, at least as regards SARS-
CoV-2 (T. Chen, 2021; Pitol & Julian, 2021).

Monitoring and controlling the spread of a disease in a cruise ship is a complex
problem, requiring information about the ship (e.g., accessible areas, ventilation, and water
supply network), the passengers (e.g., demographic and health data), and possible
diseases, including their symptoms and treatments, the respective pathogens and
epidemiology. To this end, several guidelines and protocols have been developed ((WHO)
& others, n.d.; Organization & others, n.d.); however, their application is mainly based on
decisions and interventions performed by the vessel's crew. Therefore, managing a crisis,
such as an epidemic, on board is currently prone to human errors, which can be life-
threatening in the case of severe infectious diseases. The frequency of such errors depends
on several parameters, including the number of the crew members, their training and
experience, the size of the vessel, and the number of passengers on board. Furthermore,
the interaction of crew members with diseased passengers can contribute to further
spreading of the disease and affect its operational capacity.

It is therefore evident that an automatic system for disease spread monitoring and
control in cruise ships would contribute to limiting the dependencies on the human factor,
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and consequently to passengers’ safety. Towards this direction, this chapter presents a
conceptual model integrating technologies that could be used for disease monitoring and
spread control. This model integrates sensors, actuators, artificial intelligence,
mathematical, numerical and/or other simulation models to predict the risk of disease spread
in cruise ships, and to support decision making regarding possible mitigation measures.

The remainder of this chapter is organized as follows: Section 2 presents ship related
data including provided ship schematics, empirical risk levels gathered for each
compartment and a summary of disease monitoring approaches and equipment focusing on
ships and enclosed spaces, Section 3 introduces the biomedical risk assessment (RA)
model developed, including an extensive review of related methodologies for epidemic-
related RA and simulation of disease spread, as well as an overview of the simulated
scenarios examined in this deliverable; Section 4 presents the computational modeling,
simulation, analysis, and assessment conducted; Section 5 presents the experiments and
results; Section 6 discusses key outcomes and conclusions derived.

2. SHIP RELATED DATA

2.1 Ship Schematics

In the context of the HS4U project, ship schematics of two representative cruise
ships, i.e., World Dream and Celestyal Discovery, were provided by the partners. These
schematics were utilized to identify different areas of the ship and probable disease
transmission scenarios that were used to create the biomedical RA model. These
schematics include detailed information about the ship areas for each deck, including
passenger cabins, eating areas, recreational spaces such as bars and casinos, swimming
pool areas and public toilets. Information regarding the structure (surface area and height)
and the capacity of these areas were used to adjust the biomedical RA model for each
scenario and area. The schematics for several decks of the ship can be observed in Figures
1 & 2. Additional information that is available in these ship schematics is the furniture
arrangement of the depicted spaces, such as the position of furniture in each area. These
data were further utilized for simulation purposes, i.e., modeling of areas, and to assist in
the decision-making process of the biomedical RA model.
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Figure 1. Ship schematics for Deck 13,15,16,17 of the World Dream cruise ship.
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Figure 2: Ship schematics for Deck 7-9 of the World Dream cruise ship.

The public areas of the World Dream cruise ship are denoted in blue and the cabins green. As
observed in Figures 1 & 2, the schematics provide more details regarding the space configuration of
the public areas, which enable the computational modelling of these rooms for simulation purposes.
Additionally, detailed schematics for several decks of the Celestyal Discovery can be observed in
Figures 3-6. In these schematics, cabins are denoted with green, orange, cyan and purple depending
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on the type of the cabin (Figures 5 & 6). Public areas are denoted with blue, orange or black (Figure
6). The overview of this cruise ship can be observed in Figure 3. This cruise ship comprises 11

Decks.
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Figure 4 Detailed schematics of Decks 1-3 of Celestyal Discovery cruise ship.
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Figure 6 Detailed schematics of Decks 8-11 of Celestyal Discovery cruise ship.

Overall, the schematics were utilized to develop and evaluate the proposed risk assessment
methods that will be presented in the following Sections.
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2.2 Sensors

A well-defined disease prevention system can provide timely detection, intervention, and control in
the context of infectious disease outbreaks. Notably, there is a limited number of dedicated studies
on disease monitoring in ships (Fong et al., 2022; Maeda et al., 2021; Mihai & Rusu, 2021; Nolich et
al., 2019), compared to that in broader domains such as hospitals and public spaces. The limited
research focus, particularly in the context of ships, can be attributed to restricted data access and
practical constraints among other factors. More specifically, disease monitoring in crowded indoor
spaces can be realized through various methods, including the utilization of surveillance systems
(Saga Jr et al., 2022), medical screening (Baig et al., 2017), ventilation control (Hoffman et al., 2022),
and contact tracing (Brewster et al., 2022). The likelihood of respiratory transmission is particularly
higher in indoor settings, since it encourages prolonged close contact (Morawska et al., 2020).
Therefore, to effectively identify and prevent the transmission of infectious diseases in indoor
environments, it is preferable to combine different preventive measures, considering the
circumstances of the task. For instance, (Vardoulakis et al., 2022) assessed multiple factors for
minimizing the risk of bacterial and viral contamination through respiratory inhalation and surface
contact in public washrooms. Similarly, enclosed spaces in ships promote frequent contact among
individuals onboard, which poses a challenge to disease monitoring and risk management in the
event of an outbreak (Brewster et al., 2020). In particular, the recent COVID-19 outbreaks has
created the need for mechanisms that promptly identify, isolate, and treat the affected individuals,
considering that the main routes of transmission include respiratory droplet inhalation, as well as
direct and indirect contact with the virus (W. Zhang et al., 2022).

Several methods incorporate smart technologies to develop effective outbreak response
plans with the aim of mitigating such infectious disease epidemics on ships (Aouad et al., 2021),
either through Internet of Things (IoT) sensors, drones, thermal cameras, or mobile applications.
Ultimately, sensors provide real-time data on environmental conditions, human behavior, and other
elements that can affect the spread of infectious diseases. There are various types of smart devices
and loT sensors that could be used in ships for disease monitoring (Aouad et al., 2021; Mera;j et al.,
2021). These include wearable sensors, air quality sensors, and thermals cameras. Wearable
sensors can be utilized by passengers and crew members to track their movement and monitor
epidemic indicators such as body temperature, heart rate, and respiration rate. Hence, wearable
sensors can enable extensive contact tracing and early symptom identification that allow for rapid
isolation and treatment of infected individuals (Guk et al., 2019). However, they may raise data
confidentiality and security concerns as they require personal participation and compliance from
individuals. In addition, air quality sensors can detect the presence of airborne particles, including
viruses and their utilization provides measurements of air temperature, humidity, and ventilation
rates, which impact the spread of infectious diseases (Fong et al., 2022). Therefore, the incorporation
of air quality sensors enhances the effectiveness of ventilation systems and locates areas with poor
air circulation. Nevertheless, most of them lack the capacity to differentiate between various types
of airborne contaminants (H. Zhang et al., 2021). Furthermore, thermal cameras can be used to
identify elevated body temperatures that could indicate the presence of fever, a symptom of several
infectious diseases (Vairavan, 2022). Moreover, thermal cameras are considered non-invasive and
can effectively scan crowded places, such as boarding areas. However, they are ineffective at
detecting asymptomatic carriers, who may not have fever. There are also approaches that employ
other types of sensors to measure environmental parameters, such as infrared-based sensors. For
example the approach described in (Salman et al., 2019) investigated the deployment of wireless
sensor units to assess indoor air quality. This was accomplished by employing infrared sensors to
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measure humidity, CO2, and temperature, as well as low-power wireless networking and geo-
statistic methods for the prediction of holistic indoor maps. Another study designed loT-based smart
glasses to identify suspicious cases of COVID-19 among individuals (Mohammed et al., 2020).
Testing individuals using laboratory tests might be not available or can delay the detection of
infectious diseases; thus, the use of other screening methods, such as biosensors could provide a
reliable alternative (Jain, Nehra, et al., 2021). Signal processing and analysis of cough sounds with
the use of an Al framework was introduced as an alternate diagnostic method for COVID-19 (Pal &
Sankarasubbu, 2021), and more recently, a method that utilized cough, speech, and breath sound
processing for diagnosing COVID-19 was proposed (Aly et al., 2022). This innovative way of
diagnosing respiratory diseases could be helpful in an epidemic outbreak aboard a ship; thus, such
algorithms could be employed for onboard testing, alleviating the need for dedicated medical
equipment and even aid with passive surveillance of the ship, i.e., detecting disease-classified
sounds in the common areas.

Another alternative direction concerns methodologies that employ loT-based solutions to
acquire data from different sensors and realize disease monitoring. These approaches investigate
the implementation of loT-based indoor air quality (IAQ) monitoring systems, that collect real-time
data for effective control of the environmental parameters (Kanal & Tamas, 2020; H. Zhang et al.,
2021). More specifically, most methodologies in this context utilize sensors and loT devices that
usually harness cloud computing ser-vices to optimize ventilation systems with low energy
consumption. Recently, various studies have explored an alternative direction that combines ML
techniques and sensor-based systems to detect abnormal patterns in air quality data, whereas
provide insights regarding the reason behind the observed irregularities (Ameer et al., 2019;
Roskams & Haynes, 2019). ML models have also been utilized to perform disease monitoring,
diagnosis, and prediction based on collected health data using sensors, e.g., body temperature and
heart rate, while using cloud-based services for real-time data transfer (Awotunde et al., 2021; Yan
et al., 2017). In this context, there are various types of Internet-based epidemic intelligence systems
that opt for different functionalities, such as social distancing detection, disease identification, and
contact tracing (Hossain et al., 2020). Notably, the previously mentioned methodologies showcase
the importance of implementing effective disease monitoring strategies that could be incorporated in
indoor settings, particularly in the context of infectious disease outbreaks in ships.

However, the utilization of sensors in disease monitoring systems introduces several
limitations including maintenance, cost, and data security concerns (Awotunde et al., 2021). In
particular, the collection and sharing of personal health information from cameras, wearables, and
other sensors for disease monitoring may be subject to regulations related to privacy concerns. For
instance, the General Data Protection Regulation (GDPR) establishes rules for the collection of
personal data and states that individuals must be appropriately informed regarding their use (Voigt
& Bussche, 2017). Therefore, to address these concerns it is essential to implement clear policies
and privacy-preserving protocols that ensure the confidentiality of the collected data, as well as to
obtain informed consent from individuals prior to sharing their information.

Current studies indicate that processing and analysis of the signals acquired from different
sensors can provide useful cues regarding the spread of infectious diseases in closed environments
(Jiang et al., 2022; Meraj et al., 2021). Based on the semantics derived from such an analysis,
decisions for RA and management can be made by decision support systems designed for this
purpose.
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To this end, several possible sensors are utilized in the context of the HS4U project aimed at
assisting the biomedical RA model. These sensors are part of the smart ship design that is proposed
and were identified based on the available information they provide to the RA model (Table 1). Audio
sensors can provide crucial information regarding symptomatic passengers, e.g., microphones can
be used to detect coughing in the public spaces of the ship. Sensors for detecting pathogens in the
air or water, hereinafter air DNA/RNA sensor and water DNA/RNA sensor, could be incorporated in
the HVAC and blackwater system (D3.1). The air DNA/RNA sensors could be placed in public
spaces of the ship to detect any airborne pathogen, e.g., COVID-19. Similarly, the water DNA/RNA
sensors could be placed in key areas of the blackwater system, e.g., cluster of passengers’ rooms
or public toilets, and can detect pathogens in the wastewater of the ship, e.g., norovirus. The water
DNA/RNA sensor could also be placed in swimming pools of the ship and could be combined with
the chlorine sensors that measure the chlorine levels in the pools. These two sensors can be
beneficial to monitor the risk of a disease outbreak in case of low chlorine levels combined with the
presence of a highly infectious disease in the water, such as norovirus. Monitoring public spaces in
case of elevated body temperature of passengers can also be useful to assess the risk of disease
transmission. Thermal camera sensors that are part of the smart ship design can be used to identify
probable symptomatic passengers that develop fever. Personalized Radio Frequency Identification
(RFID) sensors can provide additional feedback regarding the risk of disease transmission in case
symptoms of a disease are detected in a monitored environment of the ship. These sensors provide
information regarding the number of passengers in the room, as well as personalized information
that could assist in the RA process, e.g., contact with an infected passenger.

Table 1: Possible sensors (HS4U and beyond)

Audio sensor, e.g., microphones (symptom detection in rooms/public spaces)

Pathogen (DNA or RNA) monitoring system for HVAC (any pathogen/primarily for
common areas)

Pathogen (DNA or RNA) monitoring system for blackwater (any pathogen detection/full
ship)

Thermal camera (any pathogen/fever detection/entrance & dining areas)

RFID or similar sensor that can be used to count the number of persons in a room)

Chlorine level sensor in swimming pool (norovirus, Gl diseases)

2.3 Empirical risk levels of compartment

Considering the identified areas based on the available ship schematics and feedback from the
partners, a list of empirical risk levels for each compartment of the ship was generated, as illustrated
in Figure 7. Related studies (Pluchino et al., 2021; Ventikos et al., 2022) provided additional feedback
in regards to these risk levels as it can be observed in Figures 7 & 8, respectively.

Funded by Page 24
the European Union




D3.2 — Risk assessment methodologies, models and algorithms £

Version 2.0 — Date 10.03.2025 . 1
I Areas =] ; Other = risk =
Lounge area adults and kids sitting down mostly i
Bar/ disco odults medium evening drinking, moving around high
Public toilet odults and kids high all day high probability of microbes high
. sitting down mostly, external
Terrace with tables & chairs (external space) D . all day low
low probability, but severe ;
Pantry (food storage) S i all day ; s high
Galleys (food preparation) - o sgfienons SRR S/ v high
buffer & Rest it - p gers adults and kids high ing/noon/e g sitting down and eating high
buffer & R - Crew crew high morning/noon/evening sitting down and eating high
Reception adults and kids high all day high vol of people passing by| d
3 low but good place for
Cabin{passengers) adults and kids low mostly night symptom tracking
’ low but good place for
Cabiis botlet { pasiengas) adults and kids low mostly night symptom tracking
Figure 7: Risk levels of ship compartments provided by partners of the HS4U project.
@ 5 B
9 3 @
T L 2 % % 2
y g 2 8 & § %
E & 8 §E 3 = £
o 35 2 on -] = e
z @ = 2 = = i ke
- B 2 =3 2 = & z
E £ Z 4§ £ 2 B % E-
T & &% £ 2 g 8§ ©®
5 & 5 g § g E g 3
] = = |
e = E W 2 € = X
¥ £ E & 5 < 2 § B
= 3 g 3 § 2 % & 3B
t 8 8 8 8 2 g2 § 2
¥ E &8 & v 3 5 @ %
T s 2 ;321§ 5
E £ g EE B F 3 B
Classification Characteristics = A A& 0O QO & O Z 0O Example
Areas with no direct contacts with persons, or where contacts are Corridors.
Low " limited in time or to the members of a family unit: vV /XX X X X X st
exposure rnsk 2
’ Areas with no direct contact with a suspect or positive case. Cabins
Areas with no direct contact with a suspect or positive case: Restaurants,
Areas used as an aggregation point by p gers/crew; Bars,

Cinemas,
Areas where social distancing cannot be kept or PPE cannot be used v NN Y x Theatres.

for limited periods due to proximity: Casitios,
Internal spaces with limited air exchange capabiliry, Elevators,
Medical
High P P s zone,
T Areas with direct contact with a suspect or positive case. v v Vv x x x v Quarantine
areas

Figure 8: Empirical risk levels of ship compartments based on low, medium and high exposure risk.

a i i IR TTTNEE Rileas ol

=
= = T
i 241

Figure 9: Empirical risk levels of ship compartments based on a spectrum of category levels from low to high
(green to red).

Funded by Page 25
the European Union



D3.2 — Risk assessment methodologies, models and algorithms £
Version 2.0 — Date 10.03.2025 ——13

2.4 Air-filtration, ventilation and sewage system

Schematics of the air-filtration, ventilation, and sewage system of the Celestyal Discovery cruise ship
were acquired in the scope of the HS4U project. The HVAC schematics can be observed in Figures
10-12, where different air-conditioning units and fans of the system are denoted with various colors
depending on the type of unit used in each indoor space, e.g., orange, purple and cyan. These
schematics were utilized to conduct simulations, allowing us to analyze the potential spread of
airborne pathogens within the cruise ship. These simulations played a crucial role in understanding
the flow dynamics and potential contamination pathways. In addition, the results of these simulations
were utilized to develop the biomedical risk assessment model presented in Section 3. Furthermore,
acquired schematics of the blackwater (Figures 13-16) and greywater (Figure 17) sewage system
have been obtained. These schematics can provide insights into the probable routes of waterborne
pathogens within the ship.

Figure 10 Schematics of the HVAC system for Decks 3-5 of the Celestyal Discovery cruise ship.
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Figure 12 Schematics of the HVAC system for Decks 10-12 of the Ce/estyal Discovery cruise ship.
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Figure 13 Schematics of the blackwater sewage system for Decks 1-2 of the Celestyal Discovery cruise ship.

Figure 14 Schematics of the blackwater sewage system for Decks 3-5 of the Celestyal Discovery cruise ship
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Figure 16 Schematics of the blackwater sewage system for Decks 10-11 of the Celestyal Discovery cruise
ship
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Figure 17 Overview of the greywater pipeline system of the Celestyal Discovery cruise ship.
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3. BIOMEDICAL MODELING IN PASSENGER SHIP

In the context of disease spread monitoring various sensors, such as thermal cameras, can be used
to derive semantic information about the passengers and the condition of the different areas of the
ship after proper analysis of the raw data they acquire, e.g., identify disease symptoms, such as
fever, or identify increased passenger concentrations in public areas. The current guidelines and
protocols, as well as the experience from multiple disciplines involved, such as experience from
medical and naval personnel, can be integrated, e.g., as rules, into knowledge-based decision-
making systems, to automatically infer useful information for disease control. Such information may
include the infection risk in different areas of the ship over time, and possible actions that need to be
taken to limit the spread of the disease. Furthermore, simulation models can be used to predict the
evolution of the disease spread considering both microscopic parameters, such as the physical
properties of the pathogens and their molecular interactions, and macroscopic parameters, such as
the motility of the passengers on board.

A cruise ship may include multiple decks with different spaces accessible by the passengers,
e.g., cabin corridors, lounges with sitting areas, shops, and outdoor spaces, such as canteens and
swimming pool areas. The risk for the spread of an infectious disease in these spaces may vary,
e.g., bathrooms and restrooms are likely to exhibit a higher risk than free spaces; therefore, closer
monitoring with special sensors may be required.

Figure 18 provides a schematic representation of the architecture of a generic RA model
(GRAM). A fundamental component of this architecture is the RA node (RAN) (Figure 18 (a)). GRAM
is fully modular, composed of multiple interconnected RANSs, set up for local monitoring and decision
making in different areas within a cruise ship, as illustrated in Figure 18(b). A RAN p considers an
environment e in a ship area of interest, monitored by a set of sensors. The raw data from the
sensors, along with relevant data that may be available from the information system of the ship, are
processed and analyzed to recognize and extract semantic information about the status of the
environment and possible events taking place in that environment, e.g., using a machine learning
(ML)-based classification system. This higher-level information is provided as input into a decision-
making algorithm designed to infer the risk 7, of the environment being contaminated with a
pathogen, such as SARS-CoV-2, and possible actions a, to mitigate this risk. Implementing the
inferred actions depends on the confidence of inferred decisions. If the confidence is low, implying
high uncertainty based on the available data, a simulation module is activated. The simulation
module will provide RAN with additional data that could enhance the confidence of the decision
making. Running simulations will enable testing various alternative scenarios in silico, e.g., using
different passenger populations and activities, or predicting the outcome of different mitigation
measures. Thus, based on the predicted data, the decision-making module should be able to infer
decisions of higher confidence about the risk of disease spreading over time. It is important to
consider the risk as a function of time, 7, (t), for future values of t, because the spread of a disease
depends on the evolution of pathogens both in space and time. Also, the decision-making module
will also be able to infer the actions for risk mitigation with higher confidence. These actions will result
in changes in the monitored environment e, and the whole monitoring and disease control process
will follow a closed-loop approach (where the decision-making module plays the role of the
controller), like the one typically followed in automatic control systems and robotics (Niku, 2020).
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Figure 18: Generic closed-loop model for disease control in passenger ships. (a) Risk assessment node. (b)
Multi-node risk assessment.

The actions needed to effectively mitigate the risk of the spread of an infectious disease, should
consider social aspects, since a cruise ship is usually a diverse human community that includes
people with different personalities, ages, cultural background, and habits. Also, passengers are
customers investing in their cruise vacation, and despite the critical situation that must be managed
by strictly following relevant health protocols, they should feel comfortable and convenient within a
safe, caring environment. To this end this chapter introduces the concept of the Crew-in-the-Loop
(CiL). Instead of having a fully autonomous actuation system for disease spread control, the CiL
approach considers that the crew is continuously being informed by the decision-making system
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about the risk in different spaces of the ship and a set of possible mitigation actions that can be
taken. Thus, the crew will be able to select socially appropriate ways to implement the actions
suggested by the system. Such actions may or may not involve personal contact with the
passengers, depending on the situation and the passengers’ profile, e.g., different approaches would
be required for kids or elderly adults.

An advantage of using automatic systems for decision making is that they can incorporate
knowledge from multiple domain experts and other sources; thus, being able to infer a less subjective
decision. However, it is almost inevitable to infer decisions without an error likelihood, mainly due to
the uncertainty introduced in the input data, the acquisition of knowledge (e.g., from training data, or
directly from experts) and its representation, and in the reasoning, process used for the inference.
Such uncertainty often affects users’ trust in the system’s decisions, resulting in limited compliance
of the users to the actions the system may recommend. Enhancing the users’ trust in automatic
decision-making requires that the system is able to explain the inferred decisions, e.g., by providing
the basis and/or the reasoning steps for these decisions.

Considering that the passengers can move between the different spaces of a cruise ship, the
decision-making module of a RAN should also consider the risks inferred from other RANs within
the vessel, e.g., by following a decision-fusion approach, such as a weighted aggregation of these
risks (Torra & Narukawa, 2007). Therefore, as illustrated in Figure 18(a), the decision-making
module receives as an additional input a set of risks {,,,} originating from RANs p’ = p set up in other
spaces. For example, the abstract scheme of Figure 18(b), shows that a RAN may receive input
from other RAN setups in different spaces of the different decks; therefore, this way, RANs may
address wider areas, even the whole ship (pspip)-

To make this concept more concrete, an example multi-node GRAM instantiated for the cabin
spaces, a cabin corridor, and a lounge, is illustrated in Figure 19. Let us consider a scenario where
cabins have a privacy-preserving microphone sensor to monitor sounds relevant to the symptoms of
an infectious disease, e.g., sneezing, coughing etc., or relevant to passengers’ activities that may
result in a contamination, e.g., visiting the toilet. As illustrated in Figure 19 (a) the data analysis
module of the cabin’s RAN receives as input the sounds captured by the microphone but also
relevant data about the passenger from the information system of the ship. The semantic data
resulting from the data analysis are subsequently inputted into the decision-making module.
Assuming that the inferred decision about the risk of space being infected by a pathogen, e.g., SARS-
CoV-2, Norovirus etc., has a sufficiently high confidence level, the system informs the crew to take
safety measures, e.g., the ship’s medical doctor (MD) to examine the situation and to provide masks
and sanitizers to the passengers in the cabin if necessary.

Considering that all cabins in the corridor of the ship are equipped with the same RANSs, a
RAN dedicated to the corridor area can be set up. Figure 19 (b) illustrates such a RAN, in a corridor
area without any sensors. The data analysis module of this RAN processes relevant data from the
ship’s information system, e.g., if the cruise ship has stopped in a destination or not, embarkation
and disembarkation data, and the processed data are entered into the decision-making module,
which co-evaluates the risks inferred from the RANs of all other cabins in the corridor. Similarly, the
risk of a lounge area is inferred by considering the risk inferred from the cabin corridor that resides
on the same deck. Figure 19 (c) illustrates such an example, where the lounge has a sensor to count
the passengers entering and/or leaving the area. Also, in this case, it is assumed that the confidence
of the output risk is initially low; therefore, a simulation should be run to produce additional (predicted)
data to increase the confidence. Considering the structure of the lounge space, the passengers’
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Figure 19: Example implementations of the closed-loop model for different ship spaces. (a) Cabin. (b) Cabin
corridor. (c) Lounge

crowd, and the probability of them being infected (e.g., based on the RAN of the cabin corridor), a
hybrid CFD and agent-based simulation of the crowd, could provide predictions enabling a more
accurate estimation of the risk in the lounge 7, (t). Given that risk, actions may include the

Funded by Page 34
the European Union




D3.2 — Risk assessment methodologies, models and algorithms £
—

Version 2.0 — Date 10.03.2025 ﬁ

presentation of messages in the lounge television sets to preserve distances, and crew in the lounge
entrances prohibiting the entrance if the space is too crowded.

Considering the multi-module nature of the proposed closed-loop model, several modules
needed to be implemented. To achieve that, a literature review was contacted to identify state-of-
the-art methods for monitoring, risk assessment and simulation of disease outbreaks. Methodologies
for risk assessment were examined, and several datasets were selected to assist the development
of the decision-making module. In addition, simulation methods for disease spread were considered
as part of the simulation module and several simulation scenarios were conceptualized based on
the available sensors. Software related to decision-making, simulation and visualization was also
explored to assist with the development of the proposed closed-loop model.

3.1 DECISION MAKING FOR RISK ASSESSMENT

RA is defined as the process of gathering, processing, and storing information in order to assign a
level of risk to specific scenarios, such as an epidemic outbreak (Organization & others, 2012). The
RA cycle can be divided into three stages, i.e., risk identification, risk analysis, and risk evaluation
(Han, 2020). RA is usually coupled with control measures and continuous evaluation of the risk
(Organization & others, 2012). RA tools have been employed in healthcare to assess and manage
various scenarios, such as disease transmission, assessment of the potential risk for a patient to
develop different diseases, or even management of hospital operations. From toxicology to epidemic
outbreaks, RA tools have been proposed to mitigate potential hazardous situations, such as
exposure to toxic chemicals (Faustman & Omenn, 2012), transmitted diseases (Ross et al., 2022),
or predict the risk of developing high-morbidity diseases, e.g., cancer (Ewing et al., 2016). COVID-
19 has greatly affected the healthcare sector (Moynihan et al., 2021; H. Xiao et al., 2021) and this is
also apparent based on the influx of scientific research papers related to the disease.

The RA field has also been in the center of this trend as it is paramount for managing
epidemic outbreaks (Calo et al., 2020; Recchia et al., 2022). Epidemic outbreaks on cruise and cargo
ships have been extensively analyzed in the relevant literature (Bertagna et al., 2021; Guagliardo et
al., 2022; L.-S. Huang et al., 2021; Kordsmeyer et al., 2021; Rooney et al., 2004; Willebrand et al.,
2022); nonetheless, there is a limited number of suggested RA tools applied in such scenarios
(Braidotti et al., 2022; Ventikos et al., 2022; Z. Wang et al., 2020). Regarding the broader spectrum
of disease spread RA, the most common tools are based on three principal types of methods, i.e.,
knowledge-based, ML, and hybrid methods.

Knowledge-based methods are methods that contain information in the form of rules or
relations that guide the system to decide the appropriate action. Experts’ knowledge or experimental
data can be analyzed to generate these rules. Statistical analysis and mathematical modeling of
patient data combined with golden-standards are also employed to generate such rules and establish
the knowledge base that the health practitioners should utilize to make informed decisions
(Pirneskoski et al., 2019).

Regarding the broader spectrum of disease-spread-related RA methods, conventional
knowledge-based methods, such as case-based-reasoning (CBR) or expert methods that are
employed in emergencies (Duan & Jiao, 2021; Han, 2020). Emergency protocols are usually created
with the help of experts in the healthcare sector, often based on Delphi studies, to assess the risk
during epidemic outbreaks (Ling et al., 2021; Organization & others, 2012; Wen-yan, 2012). The
World Health Organization (WHO) has also established a RA tool based on dis-ease characteristics
and experts’ opinions focused on influenza pandemic out-breaks (Organization & others, 2016). CBR
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methods are derived by extracting information from previous scenarios, i.e., previous pandemic
outbreaks (Duan & Jiao, 2021). Despite the importance of utilizing information from past events to
create informed RA tools, these methods lack flexibility in terms of adjustability to new pathogens
and different conditions (Duan et al., 2022). Apart from the use of experts and previously acquired
information, epidemic RA methods should also take into consideration the nature of the pathogens,
e.g., virus or bacteria, that causes the disease, since it is essential for estimating the risk of a
potential pandemic outbreak (Schr der, 2020).

During the early days of the COVID-19 pandemic, transmission-specific information was not
clear even amongst experts. Therefore, certain studies attempted to estimate transmission and
fatality factors by statistically analyzing epidemic data, such as those from the Diamond Princess
cruise ship (Mizumoto & Chowell, 2020; Mizumoto et al., 2020a; Russell et al., 2020; S. Zhang et al.,
2020). These methods could be helpful if incorporated in RA tools to predict epidemic outbreaks of
recently discovered communicable diseases, especially in maritime scenarios. To the best of our
knowledge, RA tools related to epidemic outbreaks in ships have been based only on knowledge-
based methods (Braidotti et al., 2022; Ventikos et al., 2022; Z. Wang et al., 2020). An early study
identified risk factors related to waterborne diseases associated with ships by analyzing data from
previous epidemic outbreaks; however, these data were not incorporated in an RA tool (Rooney et
al., 2004). In (Z. Wang et al., 2020), an RA framework was proposed to assess the risk of epidemic
outbreaks in ships based on the ports that they have visited. The risk of an epidemic outbreak was
estimated based on a rule-based system that was employed to assign a level of risk to each ship,
i.e., low, medium, and high risk. The system utilized a proposed cumulative exposure index (CEl) for
each ship to assign a level of risk, by comparing the CDI to a reference index inferred from the
Wuhan outbreak data (e.g., high risk when CEIl is higher than the reference index). This index for
each ship was provided by a mathematical model that calculated the infection exposure during the
last 14 days based on the population density and the growth factor of the visited countries. The
growth factor was a proposed mathematical equation that accounted for the infection risk in each
country based on the daily change of confirmed cases. Casual networks are another knowledge-
based approach that has been used for assessing the risk of infection in cruise ships (Oliveira et al.,
2021).

Uncertainty is inherent in medical decision making (Begoli et al., 2019; Helou et al., 2020),
which also applies in the RA of epidemic outbreaks (Rasmussen & Sahay, 2021). Fuzzy logic has
been proven helpful to combat this problem, since it exploits the ambiguity found in real life (Arji et
al., 2019). This is further highlighted in (Jiang et al., 2022), where the fusion of fuzzy systems with
edge computing is considered a promising methodology for RA of epidemic outbreaks. In addition,
uncertainty may arise in the early stages of an epidemic outbreak, thus fuzzy logic was employed to
account for that. Fuzzy cognitive maps (FCM) have been used to assess the risk of an epidemic
outbreak on a national level and combine a knowledge-based approach with fuzzy logic (P. P.
Groumpos & Apostolopoulos, 2021). FCMs have been also utilized to predict the risk of positivity to
infectious diseases (P. P. Groumpos, 2021; P. Groumpos, 2021). In (P. P. Groumpos, 2021), an
FCM with 10 symptoms-concepts that is considering the causality factors of COVID-19 infections is
proposed. Similarly, an FCM with 16 symptoms-concepts was proposed to infer the probability of
COVID-19 infection in (P. Groumpos, 2021). Other fuzzy logic-based methods have utilized rule-
based systems to assess the risk of infection and disease spread on a national level (Cihan, 2020;
X. Guo et al., 2022; Kalampakas et al., 2024; Padmanabhan et al., 2021; Painuli et al., 2020). These
types of methods can be especially useful in domains with insufficient data that hinder the
implementation of a data-driven approach.
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314 Available data

Knowledge-based RA methods for decision-making do not rely on large datasets, as they utilize
experts’ knowledge to assess the risk of a situation. Nevertheless, prior knowledge of incidents in
the form of even small datasets can benefit the inference process by providing additional information
that experts might not consider in their decision-making process. This can be done by utilizing the
provided data to statistically analyze each incident and extract essential information that can be
utilized in the decision-making module.

The proposed RA method utilizes sensors to detect the presence of an infectious disease
and utilizes the analyzed information provided by the sensors and information system of the ship to
infer a risk level. Therefore, a knowledge-based method would benefit from datasets that contain
information entailing the causality between symptoms and infection risk, information about epidemic
outbreaks in ships and datasets that can be utilized to detect disease-related symptoms, e.g., cough
detected from an audio sensor. Nevertheless, there is limited data available for disease transmission
in enclosed areas of cruise ships. Most studies are aimed at examining the long-term disease
transmission in cruise ships. In addition, the datasets resulting from these studies are often
inconsistent with each other. The rest of this Subsection presents a summarization of the available
data related to assessing risk of infection based on symptoms of the individual, long-term disease
transmission in cruise ships based on the number of infected passengers and symptom
classification, i.e., whether a symptom is classified as disease related.

Risk of infection

A crucial aspect of assessing the risk of disease transmission in enclosed areas of the cruise ship is
the efficient identification of symptoms. These symptoms can be utilized as risk factors in the
biomedical RA model. The two most prominent viruses that were examined in the context of this
project are COVID-19 and norovirus. The COVID-19 virus is considered an airborne transmitted
disease, whereas norovirus is considered a waterborne transmitted disease. Both of these viruses
can also be transmitted through surfaces. Thus, they were selected due to their potential to rapidly
spread in a closed environment such as a cruise ship and their capability to spread through different
means of transmission. Since these viruses are highly transmissible, they have been extensively
studied. These studies can further assist in creating an accurate biomedical RA model. Based on
the available literature and input from the partner of the project HPI, several symptoms related to
COVID-19 (Table 2 and Table 3) and norovirus (Table 4 and Table 5) have been identified, aiming
to assess the probability of a passenger being infected. The results are shown in logic terms (Low,
Medium, High), together with the numerical probability, which was retrieved from the literature
(Alimohamadi et al., 2020; Grant et al., 2020; Rosa Mesquita et al., 2021).

According to the findings of Table 2, the ranking of COVID-19 symptoms sorted from the highest to
the lowest probability of being infected when displaying the relevant symptom was: fever, dry
cough, fatigue, dyspnea, diarrhea and vomiting. Furthermore, according to (Antonelli et al.,
2021), the following symptoms combinations increase the likelihood of a person having COVID-19:

1. Fever, fatigue, headache, cough, dyspnea (92% sensitivity)
2. Fever, cough, dyspnea, anosmia / ageusia (69% sensitivity)

3. Fever, cough, dyspnea (60% sensitivity)
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4. Cough, dyspnea (46% sensitivity).

Table 2 Probability of a passenger being infected with COVID-19, should one of the following
symptoms be detected.

81.20%(Alimohamadi et al.,
1. Fever (Thermal camera, 2020), 78% (Grant et al.,
smart wearable) 2020), 58.66%(Rosa
Mesquita et al., 2021)

58.50%(Alimohamadi et al.,
2020), 58%(Grant et al.,
2020), 54.52% (Rosa
Mesquita et al., 2021)

3. Sneezing (Audio sensor) v NA

4%(Grant et al., 2020),
4. Vomiting (Audio sensor) v 7.33% (Rosa Mesquita et al.,
2021)

2. Coughing (Audio sensor) v

26.50%(Alimohamadi et al.,
5. Decreased Oxygen level 2020), 23%(Grant et al.,
(Smart wearable, P.O.) 2020), 30.82% (Rosa
Mesquita et al., 2021)

38.50%(Alimohamadi et al.,
6. Fatigue (Smart wearable, 2020),31%(Grant et al.,
H.R. meter) 2020), 28.16% (Rosa
Mesquita et al., 2021)

7.60%(Alimohamadi et al.,

7. Diarrhea (body waste 2020),10%(Grant et al.,

v
sensor?) 2020), 9.59%(Rosa Mesquita
et al., 2021)
8. Dehydration (Smart v NA

wearable)

In addition, the effect of other factors on the total probability of a person being infected with
COVID-19 was examined when one of the symptoms above was present. Specifically, the factors
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under examination were age, gender, contact with a confirmed case and travel to country with
epidemic load. These factors were provided to the project partner HPI by UTH and are expected to
be available through the ship’s reception department.

Table 3 Probability of a passenger being infected with COVID-19 if one of the following factors is
present.

Children — teens
(3-16)

Young ( 17 34)

Middle age (35-

EIderIy people
(65+

Contact with confirmed case

When the country  of
departure is experiencing a
more intense transmission of
SARS-CoV-2 virus than the
country of arrival, the risk of
adversely  affecting the
epidemiological situation in
the country of arrival is higher.

Travel to country with epidemic load v

As seen in Table 3, there is no association between age and gender classification with
increased probability of being infected with COVID-19, in the cases when a passenger displays a
symptom (Biswas et al., 2020). On the other hand, contact with confirmed cases (Areyou higher
riskSevereillness COVID-19? - Ada — ada.com, n.d.) or travel to countries with epidemic load
(Organization & others, 2020b; WHOadvice international trafficRelation SARS-CoV-2 Omicron
variant (B.1.1.5629) — who.int, n.d.) increase the risk of infection.

Additional factors such as smoking, comorbidities and vaccination were also investigated.
The evidence for the relationship between tobacco smoking and COVID-19 incidence remains
uncertain and impaired by a number of case series. There is only a certain relationship between
smoking and risk of progression of COVID-19 (Gallus et al., 2023; Simons et al., 2021). Regarding
comorbidities, COVID-19 may be more severe and prolonged in individuals with medical
comorbidities such as hypertension, diabetes, chronic kidney disease, coronary heart disease,
chronic obstructive pulmonary disease (COPD), cerebrovascular disease, chronic liver disease,
arrythmia, ischemic heart disease, heart failure, cancer, and obesity. However, there is no direct
evidence that the presence of comorbidities increases the risk of infection (Vardavas et al., 2022; J.
Yang et al., 2021; Yekeduz et al., 2020). People who received a full course of vaccination may still
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experience flu-like symptoms but are less likely to suffer from severe disease and require
hospitalization. Nevertheless, the risk of infection remains the same as in the general public (Williams
et al., 2022).

Table 4 Probability of a passenger being infected with Norovirus, should one of the following
symptoms be detected.

Medium

1. Fever (Thermal camera, v 31.20%(Arias et al., 2010),
smart wearable) 16.70%(Y. Wang et al., 2018)

2. Coughing (Audio sensor) 4 NA

3. Sneezing (Audio sensor) 4 NA
o . 64.90%(Arias et al., 2010),
v
4. Vomiting (Audio sensor) 95.30%(Y. Wang et al., 2018)

5. Decreased Oxygen level

v
(Smart wearable, P.O.) NA
6. Fatigue (Smart wearable, v 7.60%% (Arias et al., 2010)
H.R. meter)
7. Diarrhea (body waste v 78.80%(Arias et al., 2010),
sensor?) 10.40%(Y. Wang et al., 2018)
8. Dehydration (Smart v NA

wearable)

Based on Table 4, ranking of norovirus symptoms varies for different age groups (Arias et
al., 2010), (Y. Wang et al., 2018). The most common symptom in children is vomiting, whereas in
adults is diarrhea. Fever is the third most common symptom and fatigue is also reported in the
literature. The impact of other factors on the total probability of a person being infected with
Norovirus, when one of the aforementioned symptoms was present, was also explored. The factors

Funded by Page 40
the European Union




D3.2 — Risk assessment methodologies, models and algorithms
Version 2.0 — Date 10.03.2025

reviewed were age, gender, contact with a confirmed case and travel to a country with epidemic
load. As presented in Table 5, there is an association with age classification and norovirus infection
as higher incidence rates occur in two different age groups (children and elderly) (Arias et al., 2010).
Moreover, females are more probable to develop acute symptoms than males (Verstraeten et al.,
2017).

Table 5 Probability of a passenger being infected with Norovirus if one of the following factors is
present.

Children — teens
(3-16)

Young (17-34)

The higher incidence rates
occur in the age groups 5-14

Middle age (35- (children and teens) and >65
64) (elderly people)
= (o [=1¢\VA o1=To] o] [=! v
(65+)
m Infectious gastro-enteritis
due to Norovirus, occurs
Female v more frequently to females
than males.
Contact with confirmed case v
When there is a norovirus
Travel to a country with epidemic v outbreak in a country,
load incidence rates are

increasing.

It is important to acknowledge that the symptoms associated with norovirus infection are
indistinguishable from those of food poisoning. The main difference is that food poisoning symptoms
have an earlier onset than those of norovirus (30min — 8hours vs 12hours-48hours). However,
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norovirus symptoms last longer (more than a week vs 48 hours) (Mutchler, n.d.). As in COVID-19,
contact with confirmed cases greatly increases the risk of infection (Marsh et al., 2018). Additional
factors such as smoking, comorbidities and vaccination are un-associated with an increase in the
risk of infection with Norovirus.

Based on the results, vomiting was found to be the primary driver of norovirus transmission.
Results presented in three relevant studies (Adams et al., 2020; Y. Chen et al., 2023; Kirby et al.,
2016) suggest that individuals who vomit are more infectious, whereas diarrhea also plays a role in
norovirus transmission, but to a lesser extent than vomiting. It is also reported that a single vomiting
event can contaminate a large area, hence the viral concentration tends to increase with each
additional vomiting episode (Kirby et al., 2016). This results in a consequent increase in the risk of
transmission.

Available datasets of COVID-19 symptoms were also considered when assessing the potential
use of each symptom as a risk factor for the biomedical RA model. The “COVID-19 Symptoms
Checker” dataset provides information to identify whether any person is having a coronavirus
disease or not based on some pre-defined standard symptoms. These symptoms are based on
guidelines given by the World Health Organization (WHQO) and the Ministry of Health and Family
Welfare, India (The results or analysis of these data should not be taken as medical advice). The
dataset contains seven major variables that will be having an impact on whether someone has
coronavirus disease or not, the description of each variable are as follows, Country: List of countries
person visited. Input features:

e Age: Classification of the age group for each person, based on WHO Age Group Standard
Symptoms: According to WHO, 5 are major symptoms of COVID-19, Fever, Tiredness,
Difficulty in breathing, Dry cough, and sore throat.

e Experience any other symptoms: Pains, Nasal Congestion, Runny Nose, Diarrhea and Other.
Severity: The level of severity, Mild, Moderate, Severe

e Contact: Has the person contacted some other COVID-19 Patient.

With all these categorical variables, a combination for each label in the variable will be generated
and therefore, in total 316800 combinations are created (link). It should be noted that this dataset is
not validated.

The purpose of the “Symptoms and COVID Presence (May 2020 data)” dataset is to provide
symptoms as input and it should be able to predict if COVID is possibly present or not (It cannot be
used for serious medical purposes) (link). This dataset contains more categories than the “COVID-
19 Symptoms Checker” dataset, including travel abroad, some comorbidities, but not severity level
(only yes or no if infected). It should be noted that this dataset is not validated.

Another dataset that is also evidence-based is the “Flatten” dataset. This dataset is the
Canada’s first publicly available pre-clinical COVID-19 dataset, based on survey responses collected
from 294,106 Canadians from March 23rd until July 30th 2020, using a platform developed by
Flatten, a Canadian non-profit organization (Jain, Charpignon, et al., 2021). This data is provided for
academic and industry research (link), through the PhysioNet research data resource (Goldberger
et al., 2000). The Flatten dataset consists of three versions of the survey referred to as Schema 1,
Schema 2, and Schema 3. As compared to Schema 1, subsequent versions either include additional
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questions or refine existing questions and answer options. Each survey response is stored as an
individual record (row) in the dataset.

Across all survey versions, each record in the Flatten dataset consists of temporal, spatial,
and survey response attributes. Temporal data include the weekly number or month during which
the survey response was recorded. Survey response data primarily consists of a binary variable
indicating whether the respondent is aged 60 or over, and their symptoms related to COVID-19 at
the time of response (i.e., fever, cough, and shortness of breath). The survey also asks whether the
survey participant has travelled outside of Canada in the past 14 days, or if they suspect they have
been in contact with someone infected with COVID-19 in the past 14 days.

Survey responses associated with Schema 1 are the most numerous, consisting of 263,640
individual level records submitted in the early weeks of the pandemic (March 23rd to April 8th of
2020). These responses also correspond with the peak of Flatten’s presence in the media. Survey
responses associated with Schema 2 consist of 14,932 records (April 8th to April 28th of 2020), and
Schema 3 consists of 15,534 records (April 28th to July 30th of 2020). Although Schema 2 and
Schema 3 contain far fewer records than Schema 1, they contain valuable information about the
demographic profile of the survey participant that Schema 1 does not have, such as their race,
ethnicity, sex, age, and pandemic-induced most pressing needs (i.e., food, medical, financial,
emotional, other).

The raw Flatten dataset consists of 498,211 survey submissions (90.81% responses from
unique participants) with granular temporal, spatial, and survey participant socio-demographic and
health factors data. Only a de-identified subset of survey responses is made available in this
version’s release, due to ethical as well as privacy and identity protection reasons. Furthermore, only
the subset of survey responses where the participant indicates living in Ontario are made available,
given the prevalence of the province in the collected data records (60.3% of the responses).

The dataset contains four variables related to the health status of a survey respondent,
labelled as follow: “probable”, “vulnerable”, “is_most_recent”, and “any_medical_conditions”. The
definition of these variables was elaborated based on guidance from public health professors of the

University of Toronto Dalla Lana School of Public Health at the time of which data was collected.

A survey respondent was considered to be a “probable” COVID-19 case if they fit into one of
the three following combinations: have come in contact with iliness; have travelled outside of Canada
and have the symptoms (fever, cough, shortness of breath); have travelled outside of Canada and
have the symptoms (cough, shortness of breath). The decision tree of this definition can be found in
the following script: https://github.com/flatten-official/flatten-
scripts/blob/staging/dags/sanitisation/sanitisation.py).

A survey respondent was considered to be “vulnerable” to COVID-19 disease if they were
aged 65 or more or if they had at least one of the following comorbidities: diabetes, cancer, diabetes,
high blood pressure, heart disease, asthma or other breathing-related illness, immunocompromising
condition, kidney disease, history of stroke. The code can also be found in the script linked above.

A survey response is considered the most recent if it is the most recent submission from the
respondent based on their unique user identifier. This variable is used in the event a respondent
makes multiple survey submissions across the survey data collection time period.

Considering this analysis, the most prominent symptoms for COVID-19 and norovirus were
examined to determine which symptoms could also be used as risk factors for transmission of these
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diseases. In case of COVID-19, fever, coughing and fatigue are considered symptoms with higher
correlation to a positive case of the virus (Table 2). In this study, fever and coughing were selected
as risk factors in the Decision-Making Module for COVID-19 transmission (see Subsection 5.1), since
these are symptoms that can contribute to pathogen transmission (see Section 4 and Subsection
5.1.1). Regarding norovirus, diarrhea, vomiting, and fatigue were considered the most correlated
symptoms to the infection (Table 4). In addition, norovirus incidences have been identified to be
more common for children in the 4-15 age group (Table 5). In the case of norovirus, diarrhea and
age were considered as risk factors in the Decision-Making Module, since these were also identified
as the most correlated factors of norovirus transmission (see Subsection 5.1.5).

Risk of long-term disease transmission

An outbreak of coronavirus disease 2019 (COVID-19) unfolded on board a Princess Cruises’ ship
called the Diamond Princess. Shortly after arriving in Yokohama, Japan, this ship had been placed
under quarantine orders from 5 February 2020, after a former passenger had tested positive for the
virus responsible for the disease (i.e., severe acute respiratory syndrome coronavirus 2; SARS-CoV-
2), subsequent to disembarking in Hong Kong. By 21 February 2020, 2 days after the scheduled 2-
week quarantine came to an end, a total of 634 people including one quarantine officer, one nurse
and one administrative officer tested positive for SARS-CoV-2. These individuals were among a total
of 3,711 passengers and crew members on board the vessel. Laboratory testing by PCR had been
conducted, prioritizing symptomatic or high-risk groups. Daily time series of laboratory test results
for SARS-CoV-2 (both positive and negative), including information on presence or absence of
symptoms from 5 February 2020 to 20 February 2020 were extracted from secondary sources [1].
The reporting date, number of tests, number of people tested positive by PCR (i.e., cases), and
number of symptomatic and asymptomatic cases at the time of sample collection are provided, while
the time of infection and true asymptomatic proportion are not available.

A total of 634 people tested positive among 3,063 tests as of 20 February 2020. Of 634
cases, a total of 313 cases were female and six were aged 0—-19 years, 152 were aged 20-59 years
and 476 were 60 years and older. Cases were from a total of 28 countries, with most being nationals
of six countries, namely Japan (n=270 cases), the United States (n=88 cases), China (n=58
cases; including 30 from Hong Kong), the Philippines (n=54 cases), Canada (n=51 cases) and
Australia (n=49 cases). Several variations of the outbreak have been identified in the literature
(Emery et al., 2020; Mizumoto et al., 2020b; Nishiura, 2020; J. Zhang et al., 2020).

In (Codreanu et al., 2021), the successful use of the ship as a quarantine facility during the
response to the outbreak on the MS Artania, which docked in Western Australia, Australia. The
health-led 14-day quarantine regime was based on established principles of outbreak management
and experiences of coronavirus disease outbreaks on cruise ships elsewhere. The attack rate in the
crew was 3.3% (28/832) before quarantine commencement and 4.8% (21/441) during quarantine on
board. No crew members became symptomatic after completion of quarantine. Infection surveillance
involved telephone correspondence, face-to-face visits, and testing for severe acute respiratory
syndrome coronavirus 2. No serious health issues were reported, no response staff became infected,
and only 1 quarantine breach occurred among crew. Onboard quarantine could offer financial and
operational advantages in outbreak response and provide reassurance to the shore-based wider
community regarding risk for infection. The data are provided in an unstructured format (image) with
symptomatic/asymptomatic cases, number of disembarked individuals, age, categories
(passengers, crew) in total.
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On March 19, 2020, when the Ruby Princess docked in Sydney Harbor, nearly 2,700 tourists
disembarked without being quarantined (Zhou et al., 2020). Subsequently, more than 600 people
were infected with COVID-19 and 21 died. On April 22, 2020, another 115 crew members were
allowed to disembark, 21 of whom tested positive for the new coronavirus. Of the 2,700 passengers
who were allowed to disembark before the test results came out, almost 1700 were Australians,
which further exacerbated the outbreak of COVID-19 in Australia, as well as in other countries. In
the case of the Ruby Princess, passengers disembarked in Sydney without being quarantined, which
suggests inadequate core capacity and insufficient supervision of the points of entry in Australia.
The number of cases only counted the total number of confirmed cases of passengers and crews
from the Ruby Princess. The data of March 31, April 3 to April 6, April 10 to April 12 were missing,
the vacancies with missing data between two points were directly connected with lines. The number
of cases only counted the number of confirmed cases of crews from the Ruby Princess. The data
from March 21 to March 31, April 3 to April 6 were missing, the vacancies with missing data between
two points are directly connected with lines. The data are provided in an unstructured format (image
and text) with symptomatic/asymptomatic cases, number of disembarked individuals, age of
infected, categories (crew, passengers), nationality and port embarked.

On March 7, 2020, a passenger ship (2,500-passenger and 1,606-bed capacity) with 33 crew
members sailed from Piraeus, Greece, to Cesme, Turkey, where an additional 350 crew members
embarked on March 8, 2020 (Hatzianastasiou et al., 2021). For 21 days, the ship sailed without any
disembarkations or embarkations until the first suspected coronavirus disease (COVID-19) case was
reported to the health authority of the Piraeus port on March 28, 2020. We describe results of the
outbreak investigation, including risk factors for transmission of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). We collected data by completing standardized forms through
interviews and medical examinations of all travelers onboard and by reviewing ship records and logs.
We used descriptive statistics to analyze the study variables and performed univariate and
multivariate analyses. In conducting clinical management of cases, the guidelines from the Hellenic
National Public Health Organization (NPHO) for health measures on travelers and repatriation were
followed, which were based on the European Union Healthy Gateways Joint Action advice for
management of COVID-19 cases onboard ships. NPHO and the Piraeus Port Health Authority
provided passengers with information about using medical facemasks at all times when outside of
their cabins, as well as handwashing, physical distancing, and cleaning and disinfecting of cabins;
ship officers supervised. Food preparation and laundry and cleaning services were halted; travelers
were instructed to clean their own cabins and store used linens in plastic bags. Cleaning and
disinfection of the terminal was done by a private company under supervision of the Piraeus Port
Health Authority, after all travelers disembarked the ship at the port of Piraeus. A catering company
provided packaged meals; personal hygiene supplies were also provided (including facemasks and
hand sanitizer). Methods and results of the environmental sampling have been published elsewhere.
Oropharyngeal specimens were collected from all travelers onboard. Molecular tests for SARS-CoV-
2 detection were performed by using the Cobas SARS-CoV-2 test qualitative assay and the Cobas
6800/8800 System (La Roche, https://www.roche.com). Serologic tests were performed on blood
specimens collected from 116 cases. Serum samples were initially tested with the Xiamen Boson
Biotech (https://www.bosonbio.com) Rapid 2019-nCoV IgG/IgM Combo Test Card, a rapid lateral
flow (immunochromatographic) test, and subsequently with the MAGLUMI800 chemiluminescence
immunoassay (Snibe Diagnostic, https://www.snibe.com). This study was a public health response
as part of activities of the Hellenic NPHO and local authorities (i.e., Piraeus Port Health Authority
and Port Administration). Participants provided verbally informed consent for recording and
processing of information during interviews, and written consent was obtained from participants for
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blood specimen analysis. All required ethics considerations were applied according to rules of the
Hellenic NPHO and the Ministry of Health. The first 3 symptomatic cases occurred on March 20
among travelers (passengers and crew) of different nationalities and working departments (hotel,
dining room service, and housekeeping [cabin steward]). The peak of the outbreak occurred during
March 30—April 1. We conducted laboratory tests for SARS-CoV-2 and for antibodies during 3 follow-
up examinations. Travelers who tested positive were isolated onboard (except the first case-patients,
who were hospitalized, and 2 travelers who were isolated in hotels designated by the government of
Greece for that purpose). All travelers onboard who tested negative were considered contacts and
quarantined individually in quarantine facilities ashore (hotels designated by the government of
Greece), except 36 crew members who tested negative but quarantined in separate decks and
facilities onboard to ensure safe ship operation. No deaths occurred; 7 patients were hospitalized,
including the first patient, who was intubated. The data were provided in an unstructured format
(image and text) with symptomatic/asymptomatic cases, number of disembarked individuals, age of
infected, categories (crew, passengers), nationality and port embarked.

A large outbreak of SARS-CoV-2 infections among passengers and crew members (60 cases
in 132 persons) on a cruise ship sailing for 7 days on rivers in the Netherlands was investigated in
(Veenstra et al., 2023). Whole-genome analyses suggested a single or limited number of viral
introductions consistent with the epidemiologic course of infections. Although some precautionary
measures were taken, no social distancing was exercised, and air circulation and ventilation were
suboptimal. The most plausible explanation for the introduction of the virus is by people (crew
members and 2 passengers) infected during a previous cruise, in which a case of COVID-19
occurred. The crew was insufficiently prepared on how to handle the situation, and efforts to contact
public health authorities were inadequate. The data are provided in an unstructured format (image
and text) with symptomatic cases. Cases were identified based on symptoms and confirmed through
tests after disembarkation.

Classification of detected symptoms

VocalSound (Gong et al., 2022) is a free dataset consisting of 21,024 crowdsourced recordings of
laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. The
VocalSound dataset also contains meta information such as speaker age, gender, native language,
country, and health condition. This repository contains the official code of the data preparation and
baseline experiment in the ICASSP paper VocalSound: A Dataset for Improving Human Vocal
Sounds Recognition (Yuan Gong, Jin Yu, and James Glass; MIT & Signify). Specifically, we provide
an extremely simple one-click Google Colab script (link) for the baseline experiment, no GPU / local
data downloading is needed. The dataset is ideal for:

e Build vocal sound recognizer.

e Research on removing model bias on various speaker groups.

e Evaluate pretrained on vocal sound classification to check their generalization ability.

¢ Combine with existing large-scale general audio datasets to improve vocal sound recognition
performance.

Another dataset is the Dataset of sounds of symptoms associated with respiratory sickness. It has
been created for the Pfizer Digital Medicine Challenge. Early detection of respiratory tract infections
can lead to timely diagnosis and treatment, which can result in better outcomes and reduce the
likelihood of severe complications. Respiratory sounds carry rich information that can be mined to
develop automated approaches for detection of sickness behaviors like coughing and sneezing. In
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this challenge, we invite you to build machine learning models for automatic detection of sickness
sounds by using audio recordings from open datasets. The dataset was created using audio files
from ESC-50 and AudioSet. We used the open source BMAT Annotation Tool to annotate this
dataset. (link)

3.1.2 General Framework of the Biomedical Risk Assessment
Model

Real-life scenarios of epidemic incidents in ships can be simulated to assist the development of RA
tools. In this project several scenarios have been selected based on the available sensors (Table 1),
identified use cases and partners’ feedback. A general framework for RA of disease transmission in
cruise ships is presented in the following Subsection (Figures 20 & 21) based on the literature review
conducted in the scope of this project, the selected scenarios, and the available sensors. The
selected scenarios including details related to a possible incidence of a disease transmission event
are also presented in this Section.

Monitoring: Sensors detect/identify a pathogen in the ship.

Data Analysis: System analyses information provided by the sensors, the ship’s information system
(retrospective data), and relevant external datasets (literature, web, etc.).

Decision Making: System assesses risk based on the analyzed information. If confidence interval
is sufficient, then inform crew members; otherwise run simulations until confidence reaches a
sufficient level for decision making.

Simulations: Run simulations based on physical/stochastic and/or epidemiological models.

Reassess risk level: Updated and more informed decision-making based on provided data from
simulations.

Data Analysis module
lassifies th f
Sensor module identifies CRIRGTIES S Sy mprom The Decision-Making
’ as disease-related and : gl
symptom (e.g., cough) in infers high risk level of module infers a high-risk
an area of the ship. the symptomatic person level with low confidence.
to be infected.

r

- ; Simulation module
nj\r:c?ullzaeiﬂfsel?snﬁ\sds Il(g\lil Data Analysis produces results for a short-
Actuation with high confidence module calculates term simulation of people
sl o simulated risk interacting in the examined

area.

Figure 20 Example of the RA node's workflow for a cabin scenario.

An example of the proposed framework can be observed in Figure 20. The Sensor Module
identifies coughing, and the Data Analysis module classifies it as disease caused. Then the Decision-
Making Module infers risk level with low confidence, which leads to the Simulation Module
approximating a short-term simulation of the two people interacting in the cabin. This approximation
is utilized by the Data Analysis module to infer a simulated risk that is then employed by the Decision-
Making module to make an informed decision with high confidence.
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As highlighted in Subsection 3.1.1, there are only a few studies that focus on disease
outbreaks in cruise ships. These studies are aimed at the long-term transmission of infectious
diseases, such as COVID-19, and provide inconsistent information regarding the exact progress of
the disease transmission, e.g., missing values or different estimated values for the number of
infected passengers. Since there is no available dataset aimed at short-term RA in enclosed spaces
of cruise ships, a knowledge-based fuzzy logic approach was examined in the Decision-Making
module of the RA model. An example of such a fuzzy knowledge-based system that utilizes a
Mamdani inference model can be observed in Figure 21.

Evaluation and Aggregation

Input H Fuzzification Defuzzification |4’| Output
(Mamdani model)

Knowledge-based System

Figure 21 Example of a fuzzy knowledge-based system

3.1.3 Decision-Making Module

A fuzzy rule-based system was employed in the decision-making module to infer the risk of disease
transmission within these areas. To perform short-term transmission risk (TR) assessment on-board
a knowledge-based method implemented through fuzzy rules was proposed by UTH in (Sovatzidi et
al., 2024; Triantafyllou, Sovatzidi, et al., 2024). An overview of the proposed method is illustrated in
Figure 22.

i Feveristow 5 < Coughis low -
&
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a) b) c) d)
Figure 22 Overview of the Decision-Making module process.

The risk assessment process begins when one or more sensors identify disease-related symptoms
inside a monitored environment (e). The characteristics of e, i.e., surface area, height, and maximum
capacity are provided through the SIS. Then, the risk assessment process utilizes the data derived
from the sensors and the SIS to assess the COVID-19 TR. Finally, the RA procedure incorporates a
knowledge-based approach implementing several fuzzy rules defined by domain experts and
information that has been retrieved from the literature.

To perform the RA of COVID-19 and norovirus transmission, the construction of a Mamdani fuzzy
inference system is performed (Ahmad Shukri & Isa, 2021; Mamdani & Assilian, 1975): (a) the input
entries are fuzzified based on the defined membership functions. The fuzzy sets are defined in such
a way to overlap covering the range of values of each risk factor. (b) The determination of the
relations among the risk factors and the output risk is then inferred based on ‘IF-THEN’ rules. As the
number of rules increases, the result is better approximated and estimated. For the TR assessment
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problem, the fuzzy rules are elicited and empirically selected by domain experts. (c) The activation
of the fuzzy rules is performed, depending on the input entries and the logic operators; (d) the
resulting output membership functions (R;) are aggregated and defuzzified, based on Eq. (1),

resulting in a final crisp output.
R (x,y,2,w,q,p) = Vi=1(4;(x) A B;(¥) A Ci(2) A D;(w) A E;(q) A Fi(p)) (1)

where “V” represents the fuzzy union and “A” the fuzzy intersection operation. In addition, j = 1,.., R,
where R is the total number of activated fuzzy rules; the variables x, y, z, w, g are the considered input
risk factors, i.e., HVAC airflow, body temperature, number of coughs, number of passengers, time
of exposure, respectively, whereas p is the estimated TR. Each variable is defined by a
corresponding fuzzy set A;, B;,C;, D;, E;, F;, respectively, with i = 1, ...,n. Regarding the TR, the
confidence value is defined as the degree of membership to the respective fuzzy set.

The total risk of disease transmission is defined as the aggregated risk of all monitored
environments. The calculation of the total risk (p;) for the pathogen transmission is performed based
on the following equation (Xia et al., 2023):

Ri= @i R (2)

where P corresponds to the total number of monitored environments, R; is the estimated risk for e;,
where © is an aggregation operator. The calculated R; is fuzzified using the corresponding defined
fuzzy sets.

Table 6 Literature-based risk mitigation measures (suggested actuations).

Immediate disinfection of affected areas.

Implement social distance policy of 2 m.

Track and quarantine infectious individual.

Monitor passengers exposed in the high-risk areas and test them every 2 days.
Mandatory use of masks for all passengers.

Disembark infectious passengers in the nearest port when feasible.

oW = Track and quarantine infectious individual.
* Immediate disinfection of area.
+ Decrease maximum allowed passengers by at least 50% until area is disinfected.
s Track and quarantine infectious individual.

Medium + Track and monitor close conducts of the infectious individual and test them every 2 days.

+ Suggest the use of masks.
« Implement social distance policy of 2 m.
s Crew should conduct an information campaign for hygienic guidelines.
= Isolate the high-risk affected areas.
* Increase airflow rate of isolated areas (>15 ACH) for at least 12 minutes.
+ |Immediate disinfection of high-risk areas.
= Increase disinfection frequency in the monitored environments.

High + Decrease maximum allowed passengers by at least 50% in areas of the affected subdeck.
L]
-
Ll

Once the risk assessment system defines a risk level related to the possibility of an epidemic
outbreak, control measures are implemented based on the severity of the risk. These measures, in
line with outbreak management guidelines and relevant studies, such as the research in
(Triantafyllou, Kalozoumis, et al., 2024) and the SHIPSAN manual (SHIPSAN, 2016), include
isolation and disinfection of affected areas, increased disinfection throughout the ship, and limiting
the number of passengers in public areas. The recommended measures vary depending on the
identified level of risk. The correspondence between the risk level and the risk mitigation measures,
hereinafter suggested actuations is presented in Table 6, where actuations are suggested to limit
the transmission of the disease.
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3.1.4 Simulation Module

For the simulation module, several Agent-Based Models (ABMs) were utilized to assist the Decision-
Making Module in the RA process. Specifically for airborne disease transmission the ABM framework
Vadere was utilized to perform airborne disease transmission simulation (Rahn et al., 2022). Due to
limited available data on short-term airborne disease transmission, this ABM framework was also
utilized to validate the generated fuzzy rule set described in the Decision-Making Module. Regarding
waterborne disease transmission, a validated ABM tailored for assessing the risk of exposure for
passengers inside a swimming pool was used (Pintar et al., 2010). This ABM was coupled with the
Wells-Rilley model to provide additional feedback related to the risk of disease transmission.
Similarly, for surface-based disease transmission a validated ABM was used to assess the risk of
disease transmission coupled with a the Wells-Rilley model (Arav et al., 2021).

3.2 SIMULATION OF DISEASE SPREAD

3.2.1  Airborne Transmission Modeling

Airborne disease transmission refers to the spread of infectious agents, such as viruses, through the
air, and is considered the primary transmission mode for several infectious diseases (Zhao et al.,
2022). For example, the relative contribution rate of aerosol particles on the Diamond Princess cruise
ship was assessed as the most dominant infection route for COVID-19 transmission (Azimi et al.,
2021). More specifically, airborne transmission primarily occurs in confined spaces when exhaled
respiratory droplets remain suspended in the air and can be potentially inhaled by other individuals
(Burridge et al., 2021). Therefore, the risk for infectious disease outbreaks in indoor spaces is
generally higher, since the concentration of contaminants is more likely to increase, considering the
factors of insufficient ventilation and confined prolonged human contact (Miller et al., 2021; Rowe et
al., 2021).

Notably, the quality of the HVAC system in an indoor setting is crucial for the spread of
infectious diseases, since it regulates the movement and advection of any aerosols, pollutants, and
carbon dioxide (COy) (Wiryasaputra et al., 2022). Furthermore, (Baboli et al., 2021) reported that low
humidity, low temperature, and a lack of air filtration constitute contributing factors to disease spread.
Hence, measuring IAQ is crucial for determining whether the airflow of the HVAC system can
mitigate the risk of airborne transmission (Kurabuchi et al.,, 2021). This can be achieved by
implementing different strategies such as air filtration, ventilation control, humidity and temperature
regulation, as well as monitoring of environmental parameters (Megahed & Ghoneim, 2021; Qian &
Zheng, 2018).

Although technical interventions can be employed to limit airborne transmission, modelling
the dynamics of disease spread is essential for the development of effective prevention strategies
(Hussain et al., 2022; Liu et al., 2021). Modelling the evaporation and dispersion of droplets is a
challenging and complex task when considering the multiphase interactions and variability of airflow
conditions in an indoor setting. In this regard, CFD models incorporate these elements of variation
to simulate respiratory actions, such as coughing and sneezing, to assess their effect on disease
spread. There have been several studies that utilize CFD modelling to provide detailed information
of the spatial distribution of infectious aerosol particles indoors (Mohamadi & Fazeli, 2022; Motamedi
et al., 2022; Tsang et al., 2022).

For instance, a recent study investigated the transport, dispersion, and evaporation of saliva
particles arising from a human cough (Dbouk & Drikakis, 2020a). More specifically, the proposed

Funded by Page 50
the European Union




D3.2 — Risk assessment methodologies, models and algorithms £
—

Version 2.0 — Date 10.03.2025 ﬁ

methodology incorporated a three-dimensional model based on fully coupled Eulerian—-Lagrangian
techniques, that takes into account the relative humidity, turbulent dispersion forces, droplet phase-
change, evaporation, and breakup parameters. The study showed that when someone coughs, the
wind speed in an open space environment significantly affects the distance airborne droplets travel.
Other studies focus on assessing the effect of ventilation and face masks under various airflow
settings, to further enhance our understanding of droplet dynamics in these conditions. These
studies, for instance, utilize CFD models to simulate aerosol plume dynamics (Ho, 2021) or examine
the fluid dynamics phenomena that affect face mask efficiency under a coughing incident (Dbouk &
Drikakis, 2020b). Furthermore, there are recent studies in the literature that focus on simulating long-
range transport of infectious aerosols in ventilated indoor environments. One such example is
explored by the authors in (Dbouk & Drikakis, 2021), where they investigated the impact of air
ventilation systems and aerosols in an elevator under different airflow settings and found that the
placement and design of the air purifier and ventilation systems significantly affect droplet dispersion.
Additionally, other studies assess the possibility of airborne transmission in realistic indoor
environments, for example, by measuring the ventilation rate in a restaurant using the tracer gas
concentration decay method (Y. Li et al., 2021), or by investigating aerosol transport and surface
deposition in a realistic classroom environment using computational fluid-particle dynamics
simulations (Abuhegazy et al., 2020). In a similar regard, there are studies that aim to identify the
transmission mechanisms of respiratory aerosols and assess strategies for risk mitigation aboard an
enclosed bus environment (X. Yang et al., 2020; Z. Zhang, Han, et al., 2021). These studies combine
experimental, numerical analysis and CDFs to simulate particle evaporation and transport. However,
despite the potential usefulness of CFD models, one major challenge is their high computational cost
and their limited capacity to capture the full complexity of a given system. Another simulation method
is Lagrangian Particle Tracking (LPT), which has been used to track aerosol hazards in operating
rooms (D’Alicandro et al., 2021). LPT methods can calculate particle trajectories and forces applied
on them, such as gravity, buoyancy, drag, and inertia, that can alter their velocity and direction in the
flow. LPT can adequately simulate the motion of a discrete number of particles, but it is considered
computationally expensive.

An alternative direction to monitor disease transmission through the airborne route is to
employ ABMs to simulate the movement and behavior of individuals within a pre-defined
computational environment (Reveil & Chen, 2022). Several studies have employed ABMs to
investigate disease transmission and exposure risk in various indoor settings, such as airplane
cabins (Lohner et al., 2021), fever clinics (J. Wang et al., 2022), subway stations (Lohner et al.,
2021), and restaurants (Lohner et al., 2022). Moreover, certain studies have specifically focused on
developing ABMs for aerosol-based airborne transmission (Altamimi et al., 2021; Farthing & Lanzas,
2021), while others address disease forecasting (Petropoulos et al., 2022). Notably, ABMs are
considered computationally intensive and challenging to calibrate as they rely heavily on prior
assumptions.

CFD models can accurately approximate real-life scenarios of airborne transmission using
equations related to airflow based on experimental studies (Zhao et al., 2022). Nevertheless,
simulations of airborne diseases that can be transmitted through human-to-human interaction need
to consider the human factor in order to assess the risk of epidemic outbreaks in social scenarios
(Tsang et al., 2022). This results in scenarios where the CFD models are required to recalculate the
airflow field to account for exposed or infected individuals and the spatial changes of the simulated
space through time, which are affected by people movement. The need for recalculations leads to
computationally expensive simulations that are impractical (Y. Guo et al., 2021). Therefore, in order
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to mitigate this effect, researchers have proposed hybrid methods which incorporate probabilistic
models and ABMs.

Probabilistic-CFD approaches are usually employed to find the probability of infection of individuals
based on dose-exposure models (La et al., 2021; Motamedi et al., 2022; Wan et al., 2009), the Wells-
Riley model (Y. Guo et al., 2021; Gupta et al., 2012; Qian et al., 2009; Yin et al., 2012; Z. Zhang,
Capecelatro, et al., 2021), and other probabilistic models such as the Markov Chain Model (MCM)
(C. Chen et al., 2014) or probability distribution functions (PDFs) (Tan et al., 2022). The effectiveness
of such models has been presented in studies that compare CFD-based and probabilistic-CFD
methods (J. Huang et al., 2021; Z. Zhang, Capecelatro, et al., 2021). Probabilistic-CFD models
consist of two parts, i.e., the exposure equation that calculates the exposure dose of individuals
based on the concentration of pathogens provided by CFD simulations and the infection probability
equation, usually an exponential model, that estimates the probability of infection based on the
calculated dose exposure and other infection-related parameters (Aliabadi et al., 2011). These
infection-related parameters can either be determined based on previous research, e.g.,
experimental or CFD studies (Gupta et al., 2012), or by statistical analysis, e.g., maximum likelihood
estimation or MCM (Cheng et al., 2022; La et al., 2021; Yin et al., 2012). Probabilistic models such
as the Wells-Riley model assume that the pathogen concentration is uniformly distributed, which is
less accurate in realistic scenarios (Mukherjee & Wadhwa, 2022). In (Tan et al., 2022), the use of a
PDF was proposed as a solution to this problem. More specifically, the parameters of the PDF, e.g.,
mean and standard deviation of pathogen concentration, were determined by statistically analyzing
174 high-resolution CFD simulations. Such probabilistic methodologies mostly focus on predicting
infected individuals without considering social factors and spatial changes of the environment. A
solution to this problem has been proposed in (Y. Guo et al., 2021), where a spatial flow impact
factor was incorporated in the Wells-Riley model to account for spatial changes. Furthermore, this
approach could be used for minimizing the overall infection rate at a specific location by optimizing
the location distribution of population and facilities.

ABM-CFD approaches introduce motion mechanisms, thus providing more realistic
simulations of airborne disease transmission scenarios (Harweg et al., 2023; Mukherjee & Wadhwa,
2022). These methods utilize CFD simulations to predict the airflow field, such as droplet distribution
and then incorporate the inferred pathogen concentration to the ABM that predicts infected and
exposed human agents based on deterministic, probabilistic, or epidemiologic dynamics (Harweg et
al., 2023; Lazebnik & Alexi, 2023; Mukherjee & Wadhwa, 2022; Schinko et al., 2022; J. Wang et al.,
2022). Approaches considering a deterministic disease transmission model consider an infection
occurrence based on thresholds determined by experimental studies or relevant literature (Léhner
et al., 2022; Mukherjee & Wadhwa, 2022). Non-deterministic approaches either utilize probabilistic
infection models, such as the dose-exposure model (J. Wang et al., 2022), or epidemiological
models, such as the Susceptible-Infected-Removed and Susceptible-Exposed-Infected models
(Ghoroghi et al., 2022; Lazebnik & Alexi, 2023). Based on the newly infected population, the ABM
model updates the infection status and location of the population, which are then used as boundary
conditions for the next time step of the CFD simulation (Ghoroghi et al., 2022; Mukherjee & Wadhwa,
2022; Schinko et al., 2022; J. Wang et al., 2022). ABM methods that incorporate social features that
occur in real-life scenarios, such as contact avoidance of agents, employ the Social Force Model
(SFM) (Harweg et al., 2023) which has been reported to provide high-fidelity simulation results
(Marlow et al., 2021). Similar methods utilize computational crowd dynamics (CCD) models (Léhner
et al., 2022), discrete event simulation (DES) models (Ghoroghi et al., 2022), and clustering methods
(Schinko et al., 2022) to simulate spatio-temporal changes in the system. Moreover, some
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methodologies incorporate more sophisticated mechanisms in the ABM simulation, such as
coughing, use of protective equipment, hand hygiene, vaccination, and different ventilation
techniques (Ghoroghi et al., 2022). In addition, several studies combine airflow parameters, e.g.,
airflow velocity, and agent related variables, e.g., height, face orientation, and inhalation/exhalation
cycle (Lazebnik & Alexi, 2023; Mukherjee & Wadhwa, 2022). In (Lazebnik & Alexi, 2023), the impact
of agent movement in the airflow field of the simulation is considered by incorporating a wake model,
namely the Actuator Line Model (ALM), in the simulation.

ABMs can be simulated on 2D or 3D mesh grids. ABMs based on a 3D grid system can
provide more fine-grained simulations that can result in more realistic results (Lazebnik & Alexi,
2023; Marlow et al., 2021); nevertheless, they can become computationally expensive (Mukherjee
& Wadhwa, 2022). In contrast, an ABM simulation based on a 2D grid mesh could be more
computationally efficient but may compromise the fidelity of the simulation due to interpolation of
data from a 3D to 2D mesh grid system. In (Léhner et al., 2022), a hybrid method was adopted which
utilized a CCD model based on a 2D-background mesh grid and a CFD model based on a 3D mesh
grid to simulate pedestrian motion. The translation from 3D to 2D and vice versa was achieved by
utilizing interpolation coefficients that were computed at the start of the coupled simulation.

Hybrid methods often utilize an Eulerian-based CFD or a Lattice-Boltzmann (LB)-based
model to calculate the airflow and other analytical methods to find the trajectory and dispersion of
droplets (Tsang et al., 2022). More recently, an LB-based method using a Large Eddy Simulation
(LES) model was combined with an SFM-based ABM to simulate pathogen dispersion in evacuation
scenarios (Marlow et al., 2021). In (Mukherjee & Wadhwa, 2022), a semi-analytical approach utilized
a set of coupled ordinary differential equations (ODEs) to simulate the dynamics of droplets as a
function of the airflow. In additional, mechanics involving exposure to pathogens take into
consideration short- and long-range airborne routes (Cheng et al., 2022), as well as direct inhalation
of coarse droplets and direct deposition of medium droplets on facial membranes (J. Wang et al.,
2022). Another parameter that is considered in hybrid methods is the size range of droplets, since it
affects the possibility of infection. Studies often define an interval-based size range (La et al., 2021;
Motamedi et al., 2022; Schinko et al., 2022) or a discrete set of size ranges (Cheng et al., 2022; Wan
et al., 2009; Yin et al., 2012), while others focus on one type of droplet size (Qian et al., 2009). In
addition, methods that study droplet deposition on surfaces could incorporate surface disease
transmission mechanics to provide a more realistic disease transmission model (Cheng et al., 2022).
A hybrid method could also incorporate variations of coupled long-range, close-contact and surface
dose exposure mechanisms in a dose-response model to predict risk of infection and disease
transmission. Long-range airborne transmission could be calculated based on CFD simulations or
the multi-zone infiltration and exfiltration model (MIX) and fomite transmission based on discrete-
time non-homogeneous MCM. Furthermore, dose exposure related to close-contact interaction
depends on short-range airborne transmission, direct deposition of large droplets on mucous
membranes and inhalation of droplets based on the normal distribution model (S. Xiao et al., 2017).

In summary, the methods used to model airborne disease transmission comprise numerical
physical models, mechanistic models, ABMs, or any combination of them. The novelty regarding the
methods mostly focuses on the case study (e.g., COVID-19 transmission in buildings) and the
parameters regarded in the models (e.g., ventilation incorporated, specific droplet size, use of motion
mechanics in ABM, different SFM parameters considered).
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Waterborne transmission refers to the acquisition of disease by exposure to pathogens through
contaminated drinking water, recreational water (e.g., pools), bathing, washing, or eating food
exposed to contaminated water, and overall lack of clean water supply, sanitation, and hygiene.
Water can become contaminated at the source, during transport to the storage facility, in storage
containers, or via improper handling. Several studies have attempted to model waterborne
transmission, and it has been shown that, apart from the direct introduction of pathogens into the
body, i.e., drinking water and eating contaminated food, waterborne transmission takes place
through aerosols containing contaminated water particles of different sizes (Ali et al., 2021; Hamilton
& Haas, 2016; Y. Li et al., 2020; Mari et al., 2019; Pintar et al., 2010; L. Zhang et al., 2016).

3.2.2 Waterborne Transmission Modelling

It has been reported that stack aerosols are generated within vertical building drainage stacks
during the discharge of wastewater containing fecal matter and exhaled mucus from toilets and
washbasins. Experimental measurements regarding the stack air pressure and temperature
distributions indicated that stack aerosols can spread to indoors through pipe leaks, providing direct
evidence for the long-range aerosol transmission of COVID-19 through drainage pipes via the
chimney effect (Q. Wang et al., 2022). Another study reviewed the transmission of COVID-19
through aerosolized wastewater and aerosols generated by toilet flushing (Ali et al., 2021). In (Y. Li
et al., 2020), the VOF method was employed to simulate different flushing processes and the VOF—
DPM method was used to model the trajectories of aerosol particles during flushing. The simulation
results indicated the massive upward transport of virus particles, with 40%—-60% of particles being
transported above the toilet seat, leading to large-scale virus spread. The VOF-DPM was also
employed in to investigate the transmission of infectious diseases in restrooms during male urination.
The results revealed that male urination can induce strong turbulent flow with an average urine
impinging velocity of 2.3 m/s, which can agitate virus particles and raise them (Cao et al., 2022). A
similar study was conducted regarding virus transmission from urinals. It was reported that the
trajectory of the particles generated by urinal flushing exhibited an outward spreading mode,
reaching a height of 0.84 m within 5.5 s (J.-X. Wang et al., 2020). In (J.-X. Wang et al., 2022), CFD
and DPM were used to quantitatively and visually demonstrate the effects of ventilation airflow
speed, fan locations, and fan size on virus aerosol distribution due to toilet flushing in a typical family
bathroom. They reported that the traditional ceiling fan was barely functional since aerosol particles
were not adequately removed, while the side-wall fan functioned more efficiently, and its ventilation
capability and performance were significantly better, removing nearly 80.9% of the lifted aerosol
particles. Putting the toilet lid down before flushing is an effective method to prevent virus
transmission. Nonetheless, male urinals do not have a lid or other barriers and people do not always
have the habit of putting the toilet lid down before flushing to prevent aerosol cloud generation. In (L.
Zhang et al., 2016), both direct and indirect transmission pathways were incorporated into a
reaction—diffusion waterborne pathogen model, considering the spatial heterogeneity and the
mobility of host population and flowing water on a spatial continuous and bounded domain.

Mathematical modelling has also been utilized to estimate the risk of infection based on
simulations of water-mediated pathogen transportation in water distribution systems. Waterborne
disease transmission scenarios have been explored, calculating the probability of infection based on
dose-response models or deterministic infection mechanisms (Hamilton & Haas, 2016; Heida et al.,
2022). In (Mari et al., 2019), a spatially explicit network model was utilized to simulate short-term
pathogen transport throughout communities. The network model contains nodes that represent
human communities that are arranged in a spatial setting and are connected through hydraulic
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pathways. The evolution of pathogen transportation is monitored by an ODE epidemiological system
that is affected by the population size (susceptible and infected individuals), pathogen concentration
in the water supply, and human mobility. In (Chaysiri et al., 2021), the impact of water and sanitation
services on waterborne disease transmission was investigated. A variation of the SIR model was
introduced to simulate a cholera outbreak in Haiti. The so-called susceptible—infected—water—
dumpsite—recovered (SIWDR) model incorporated the impact of open dumpsites as pathogen
concentration sites and deficits of water sanitation services in the SIR ODE system. The affected
water systems included were the drinking water supply system and the wastewater and sewage
system. For the dumpsite-related parameter, deficits in municipal solid waste management and other
non-water-related pathogen concentration sites were also considered in the model. In this model,
the infectious population affected the number of concentrated pathogens in the dumpsite-related
ODE, as well as in the water-related ODE. The dumpsite-related ODE also affected the water-related
one, and both subsequently affected the number of newly infected population.

3.2.3 Surface Transmission Modelling

Surface transmission, also known as fomite-mediated transmission, occurs when susceptible
individuals come into contact with surfaces that have been contaminated by infected individuals
through direct touching, direct deposition of respiratory droplets, and/or deposition of respiratory
aerosols under different conditions (Azimi et al., 2021). Numerical simulations have been conducted
regarding the virus deposition on surfaces via aerosol/droplet transport due to inhalation or coughing
under different scenarios (Sen, 2021; Vuorinen et al., 2020). However, the transmission modelling
from contaminated surfaces to humans has been mainly focused on mechanistic or stochastic
models. In (Canales et al., 2019), the contribution of fomite-mediated exposure to infection and
illness risks during outbreaks was estimated. In particular, a stochastic simulation model in discrete
time was developed to predict 17 h of simulated human behavior, taking into consideration hand-to-
porous surfaces, hand-to-nonporous surfaces, hand-to-mouth, -eyes, -nose, as well as hand
washing events. In another study (Pitol & Julian, 2021), two mechanistic models of indirect
transmission within the quantitative microbial RA (QMRA) framework were adopted to estimate the
infection risk for COVID-19 in community settings and provide guidance on potential intervention
strategies. More specifically, the first model was used to estimate the infection risk for single contacts
with contaminated surfaces; the SARS-CoV-2 RNA concentration on surfaces was obtained from
the literature and concerned surface contamination in public spaces, e.g., bus stations, gas stations,
stores, and playgrounds. The second model was used to estimate risks from surface-mediated
community transmission as a function of the prevalence of COVID-19 cases in the community and
assess the efficacy of feasible intervention strategies of hand and surface disinfection. In (Wilson et
al., 2020), the transmission of pathogens from surfaces to fingertips was examined as an alternative
way to simulate fomite-mediated transmission. The potential magnitude of exposure from surfaces
to fingertips was calculated based on a mechanistic model. More specifically, the model calculated
the pathogen concentration on the fingertips after contact with a contaminated surface based on the
pathogen concentration of the surface before the contact, the pathogen concentration of the
fingertips after the contact, and the transfer efficiency of the pathogen. The concentration-related
parameters were calculated based on experimental data and statistically adjusted to account for the
swabbing efficiency in the experimental study. In (Lei et al., 2018), comparative analyses on the
routes of transmission of influenza A (H1N1), SARS CoV, and norovirus in an air cabin were
conducted. A review on the mathematical modelling of fomite-mediated transmission, factors that
affect transmission of microbes between fomites and humans, and the implications for human health
can be found in (Stephens et al., 2019).
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Fomite-mediated transmission has also been simulated using mathematical models such as
the Environmental Infection Transmission System (EITS) framework. The EITS is a compartmental
model that incorporates live pathogens of the environment as a parameter in the SIR model. It was
proposed in (S. Li et al., 2009), where the epidemiological dynamics of the EITS are described by
an ODE system that is affected from the traditional transition rates of infection and recovery, as well
as environmental related probabilities such as fraction of pathogens picked by a susceptible person,
probability of infection based on pathogens picked, number of pathogens deposited to environment
per unit of time and rate at which pathogens are eliminated from the environment. The dynamics of
the model can be simulated in a deterministic or a stochastic way, where events (e.g., a susceptible
becomes infected) happen simultaneously and continuously or a single event randomly occurs in
each case respectively. An extension of the EITS was proposed in (Kraay et al., 2018), where a
model combined hand contamination due to fomite touching and infection based on self-inoculation,
i.e., infection due to contaminated hands touching the mouth or other membranes.

3.3 SIMULATION-BASED ANALYSIS OF INFECTION
TRANSMISSION

3.3.1  Analysis and Modelling of Accessible Areas

The implementation of the proposed system was divided into several modules. The closed-loop
system was represented by an object-oriented ship structure that encompassed the RA node that
comprised Sensors, Data Analysis, Decision-Making, and Simulation Modules. These can be
observed in Figure 23, where a Unified Modelling Language (UML) diagram of the ship is presented.
Each compartment of the ship contains information that can be used by the RA node, such as a
passenger and furniture list, and are implemented as classes in Python.

@© compartment
Shi g o category: string -
P o compartment_risk: string @ RiskAssessmentNode | @Cuurdinates
o has_confirmed_case; bool | @ Deck o population density; int sensors: Sensars(] R NS
o num_deaths: int o epidemic_risk: string = decisior; SrialiiRa Facisn Makinablomkbe ax: float
o total infected: int o compartments: Compartment[] | e furniture_list: Furniture(] = Bl : 9 oy : float
o decks: Deck(] o surface_area: float o data_analysis: DataAnalysisModule oz finat
= num decks: int i I:otal_p:_)pulution: e o simulations: SimulationModule]] it
L o passenger_list: Passenger(]
o risk_assessment_node: RiskAssessmentNode
@ Passenger l

m age: int | =

o gender: string @ Ohject

o positive_test: bool P z

o infection_nsk: string E :sé%gt!:;t @ Furniturs

o contack with case: bool B z

o visited_epidemic_region: bool E gsr‘;’g";ﬁng B iedbin Sl strtecepong; loat

o comerbidities: bool i 5

& symptoms: stringl] o location: Coordinates[]

o vaccinated: boal

o tobacco_uzage: boaol

Figure 23: The implemented object-oriented ship structure scheme.

3.3.2 Simulation Platforms

There are several simulation platforms that can be used for modelling the transmission mechanics
of infectious diseases in indoor and outdoor spaces that also incorporate human interactions. The
identified simulation methods would require the use of CFD-related and agent-based modelling. The
simulation software utilized in such a multi-simulation module should also be configurable to
encompass mechanistic or probabilistic models. Several such tools have been examined and
presented in this subsection, namely PyNetLogo, MESA and Vadere. PyNetLogo and MESA were
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selected based on the review provided in (Antelmi et al., 2022) and Vadere due to the related study
on airborne transmission provided in (Rahn et al., 2022).

PyNetLogo is interface to use and access NetLogo (Wilensky 1999) from Python. One can
interact with NetLogo in either headless (no GUI) or interactive GUI mode. The library provides
functions to load models, execute commands, and get values from reporters. It is compatible with
NetLogo 6.1 and newer. It is largely similar to the NetLogo Mathematica Link and RNetLogo
(deprecated). NetLogo is a multi-agent programmable modelling environment. It is used by many
hundreds of thousands of students, teachers, and researchers worldwide. It also powers HubNet
participatory simulations. It is authored by Uri Wilensky and developed at the CCL. You can
download it free of charge. You can also try it online through NetLogo Web. NetLogo allows modelers
to develop their models through a simple-to-use dedicated modelling language while offering a VPL
to create and edit components to realize any simulation. However, its accessibility leads to significant
limitations regarding model complexity. (link) (Antelmi et al., 2022)

Features

e Tools for analysis with extension

e Random number generator with extension

e Batch-runner with extension

e Visualization in 2D and 3D

e Parallel and distributed simulation with extension

e Grid, continuous, network, Geographic Information Systems (GIS) with extension

e Model exploration and optimization with BehaviourSpace. BehaviorSpace is a software tool
integrated with NetLogo that allows you to perform experiments with models. BehaviorSpace
runs a model many times, systematically varying the model's settings and recording the
results of each model run. This process is sometimes called “parameter sweeping”. It lets
you explore the model’s “space” of possible behaviors and determine which combinations of
settings cause the behaviors of interest. If your computer has multiple processor cores, then

by default, model runs will happen in parallel, one per core. (link)

MESA is an Apache2 licensed agent-based modelling (or ABM) framework in Python (Kazil et
al., 2020). Mesa allows users to quickly create agent-based models using built-in core components
(such as spatial grids and agent schedulers) or customized implementations; visualize them using a
browser-based interface; and analyze their results using Python’s data analysis tools. Its goal is to
be the Python 3-based counterpart to NetLogo, Repast, or MASON. One of the main advantages of
Mesa is its extensibility, allowing users to develop and share their components through an open-
source ecosystem. This approach created a rich community providing extensions for any need,
including the possibility to exploit a multi-processor system, support for GIS data, and advanced
analysis (Antelmi et al., 2022).

Features
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e Modular components

e Browser-based visualization

e Built-in tools for analysis

e Random number generator

e Batch-runner

e Visualization in 2D and 3D

e Parallel and distributed simulation

e Grid, continuous, network, Geographic Information Systems (GIS) with Mesa-Geo
e Model exploration and optimization

Vadere is an open-source simulation framework to promote interdisciplinary understanding
(Kleinmeier et al., 2019). Pedestrian dynamics is an interdisciplinary field of research. Psychologists,
sociologists, traffic engineers, physicists, mathematicians, and computer scientists all strive to
understand the dynamics of a moving crowd. In principle, computer simulations offer means to
further this understanding. Yet, unlike for many classic dynamical systems in physics, there is no
universally accepted locomotion model for crowd dynamics. On the contrary, a multitude of
approaches, with very different characteristics, compete. Often only the experts in one special model
type are able to assess the consequences these characteristics have on a simulation study.
Therefore, scientists from all disciplines who wish to use simulations to analyze pedestrian dynamics
need a tool to compare competing approaches. Developers, too, would profit from an easy way to
get insight into an alternative modelling ansatz. Vadere meets this interdisciplinary demand by
offering an open-source simulation framework implemented in Java, that is lightweight in its
approach and in its user interface while offering pre-implemented versions of the most widely spread
models.

Features

e Modular components

o Implemented various useful features such as behavioral, airborne transmission, dose
exposure models and topographic elements

e Graphical User Interface

e Visualization in 2D

e Relies on target-based movements of agents for simulations

o Needs implementation for custom simulation settings

Agent-based modelling can be employed as a preliminary simulation method for the
Simulation Module. The Snapshots of example simulation cases generated from Vadere are
illustrated in Figure 24. In detail, one or two infectious passengers (infectious agents) in red are
placed in a room with healthy passengers (healthy agents) in blue. They move with a set breathing
and coughing cycle. While the infectious agents move, they release an aerosol cloud of fixed radius
and pathogen load. The healthy agents are being exposed to the pathogen load when they move in
the areas that the aerosol clouds were released. These healthy agents accumulate pathogen
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exposure that can be then used to calculate the risk of infection. Then, the number of the newly
infected agents can be used to assess the risk of disease spread. Agent-based modelling software
can also be used to visualize the simulated scenarios by importing the information provided in the
ship classes of Figure 23.

*  Cabin simulated scenario * Eafing area simulated scenario

* |nfected
«  Healthy

Figure 24: Two simulated scenarios of disease spread in a cabin and eating room. Infected agents with red,
health with blue.

3.4 SIMULATED SCENARIOS

As part of the experiments conducted in this study, several scenarios of disease transmission were
simulated considering the ship schematics of ships (Figures 1-6), identified sensors and information
that can be obtained from theses sensors (Table 1), schematics of the air-filtration and ventilation
system, (10-12), as well as schematics of the sewage system (Figures 13-17). To assess disease
transmission dynamics for viruses such as COVID-19 and norovirus and to evaluate our method, we
simulated scenarios in specific areas of the ship that were selected based on empirical data from
the literature (Figures 8 & 9) and insights from partners of the project (Figure 7). These included
indoor areas, such as eating areas, bars and cabins, as well as outdoor areas such as swimming
pools. The impact of the sanitation systems on waterborne disease spread were not examined since
these systems provide adequate safeguards to prevent waterborne disease spread.

3.4.1 Eating Area

Monitoring: An audio sensor in an eating area receives/does not receive symptom sounds, such
as coughing. A thermal camera sensor senses the elevated temperature of one or more individuals.
A DNA/RNA sensor located in the HVAC system in the same area detects and identifies a pathogen.
The number of passengers in the area is also tracked by an RFID sensor. The ship’s information
system sends data about the vaccination status in the eating area, based on the passenger’s key
card detected by the RFID sensor upon entrance. The information obtained from each of these
sensors can be processed independently or combined.

Data Analysis: The data analysis block receives information from the sensors and translates it into
relevant semantics.

Decision Making: Infer infection risk level based on the results of the data analysis and the domain
knowledge encoded into the decision making (DM) module.

If enough information is available for DM to infer and the confidence interval is sufficient, then inform
crew members of the risk level.
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If the confidence interval is insufficient, then the system does not have enough information. In this
case, run simulations to gather more information about possible spreading scenarios of the disease
in the ship compartment.

Simulations: Run simulations based on physical and/or epidemiological models

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol
suspension time in the air and the droplet deposition on surfaces. Preventive measures, such as the
effect of masks, can also be considered.

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk
of infection for individuals in the room.

All acquired information is fed back to the decision-making module to reassess the risk level with a
sufficient confidence interval.

3.4.2 Vessel’s other high-risk public spaces

Monitoring: An audio sensor in a high-risk public space, e.g., bar (Figure 7), receives/does not
receive symptom sounds, such as coughing. A thermal camera sensor senses the elevated
temperature of one or more individuals. A DNA/RNA sensor located in the HVAC system in the
same area detects and identifies a pathogen. The number of passengers in the area is also tracked
by an RFID sensor. The ship’s information system sends data about the vaccination status of
passengers, based on the passenger’s key card detected by the RFID sensor upon entrance. The
information obtained from each of these sensors can be processed independently or combined.

Data Analysis: The data analysis block receives information from the sensors and translates it into
relevant semantics.

Decision Making: Infer infection risk level based on the results of the data analysis and the domain
knowledge encoded into the decision making (DM) module.

If enough information is available for DM to infer and the confidence interval is sufficient, then inform
crew members of the risk level.

If the confidence interval is insufficient, then the system does not have enough information. In this
case, run simulations to gather more information about possible spreading scenarios of the disease
in the ship compartment.

Simulations: Run simulations based on physical and/or epidemiological models. For example,

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol
suspension time in the air and/or the droplet deposition on surfaces. Preventive measures, such as
the effect of masks, can also be considered.

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk
of infection for individuals in the room.

All acquired information is fed back to the decision-making module to reassess the risk level with a
sufficient confidence interval.
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3.4.3 Vessel’s low-risk public spaces

Monitoring: An audio sensor in a low-risk public space, e.g., lounge area (Figures 7 & 8),
receives/does not receive symptom sounds, such as coughing. A thermal camera sensor senses
the elevated temperature of one or more individuals. A DNA/RNA sensor located in the HVAC
system in the same area detects and identifies a pathogen. The number of passengers in the area
is also tracked by an RFID sensor. The ship’s information system sends data about the
vaccination status of passengers, based on the passenger’s key card detected by the RFID sensor
upon entrance. The information obtained from each of these sensors can be processed
independently or combined.

Data Analysis: Data Analysis: The data analysis block receives information from the sensors and
translates it into relevant semantics.

Decision Making: Infer infection risk level based on the results of the data analysis and the domain
knowledge encoded into the decision making (DM) module.

If enough information is available for DM to infer and the confidence interval is sufficient, then inform
crew members of the risk level.

If the confidence interval is insufficient, then the system does not have enough information. In this
case, run simulations to gather more information about possible spreading scenarios of the disease
in the ship compartment.

Simulations: Run simulations based on physical and/or epidemiological models. For example,

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol
suspension time in the air and/or the droplet deposition on surfaces. Preventive measures, such as
the effect of masks, can also be considered.

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk
of infection for individuals in the room.

All acquired information is fed back to the decision-making module to reassess the risk level with a
sufficient confidence interval.

3.4.4 Public Swimming Pool

Monitoring: An audio sensor in the public swimming pool area receives symptom sounds, such as
coughing or sneezing of symptomatic cases. A thermal camera sensor senses the elevated
temperature of one or more individuals. A DNA/RNA sensor located in the swimming pool detects
and identifies a pathogen. A chlorine sensor evaluates whether the chlorine levels in the swimming
pool are sufficient to mitigate the risk of infection and the spread of the disease. The number of
passengers may also be tracked by a sensor (an RFID sensor calculating how many passengers
enter the swimming pool area using their key cards). The ship’s information system sends
information about the population demographics in the swimming pool area, based on the
passenger’s key card detected by the RFID sensor upon entrance. The information obtained from
each of these sensors can be processed independently or combined.
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Data Analysis: The data analysis block receives information from the sensors and translates it into
relevant semantics.

Decision Making: Infer infection risk level based on the results of the data analysis and the domain
knowledge encoded into the decision-making (DM) module.

If enough information is available for DM to infer and the confidence interval is high, then inform crew
members of the risk level.

If the confidence interval is low, then the system does not have enough information. In this case, run
simulations to gather more information about possible spreading scenarios of the disease in the ship
compartment.

Simulations: Run simulations based on stochastic models. For example,

Probabilistic models for pathogen transmission in water are utilized to estimate the number of
infected individuals in the swimming pool.

All acquired information is fed back to the decision-making module to reassess the risk level with a
sufficient confidence interval.

3.45 Public toilet

Monitoring: An audio sensor in a public toilet area receives/does not receive symptom sounds, such
as coughing or sneezing of symptomatic cases. A thermal camera sensor senses the elevated
temperature of one or more individuals. A DNA/RNA sensor located in the HVAC system in the
same area detects and identifies a pathogen. A DNA/RNA sensor located in the blackwater
pipeline system of the ship within the same area detects and identifies a pathogen. The
number of passengers may also be tracked by a sensor (an RFID sensor if the toilet door opens only
by the passenger key card). The ship’s information system sends data about the vaccination
status of passengers, based on the passenger’s key card detected by the RFID sensor upon
entrance. The information obtained from each of these sensors can be processed independently or
combined.

Data Analysis: The data analysis block receives information from the sensors and translates it into
relevant semantics.

Decision Making: Infer infection risk level based on the results of the data analysis and the domain
knowledge encoded into the decision-making (DM) module.

If enough information is available for DM to infer and the confidence interval is high, then inform crew
members of the risk level.

If the confidence interval is low, then the system does not have enough information. Then run
simulations to gather more information about possible spreading scenarios of the disease in the ship
compartment.

Simulations: Run simulations based on physical and/or epidemiological models. For example,
Computational Fluid Dynamics/Particle Tracking simulations are utilized to provide information about
droplet deposition on the surfaces of the area. Preventive measures, such as the effect of masks,
may also be considered.

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.
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Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk
of infection for individuals in the room.

All acquired information is fed back to the decision-making module to reassess risk level with a
sufficient confidence interval.

3.4.6 Ship Cabin

Monitoring: An audio sensor in a ship cabin receives/does not receive symptom sounds, such as
coughing or sneezing of symptomatic cases. A thermal camera sensor senses the elevated
temperature of one or more individuals. A DNA/RNA sensor located in the HVAC system in the
same area detects and identifies a pathogen. A DNA /RNA sensor located in the blackwater pipeline
system of the ship within the same area detects and identifies a pathogen. The number of
passengers in the area is also tracked by an RFID sensor. The ship’s information system sends
data about the vaccination status of passengers, based on the passenger’s key card detected by the
RFID sensor upon entrance. The information obtained from each of these sensors can be processed
independently or combined.

Data Analysis: The data analysis block receives information from the sensors and translates it into
relevant semantics.

Decision Making: Infer infection risk level based on the results of the data analysis and the domain
knowledge encoded into the decision making (DM) module.

If enough information is available for DM to infer and the confidence interval is high, then inform crew
members of the risk level.

If the confidence interval is low, then the system does not have enough information. Then run
simulations to gather more information about possible spreading scenarios of the disease in the ship
compartment.

Simulations: Run simulations based on physical and/or epidemiological models. For example,

Computational Fluid Dynamics/Particle Tracking simulations provide information about the aerosol
suspension time in the air and the droplet deposition on surfaces. Preventive measures, such as the
effect of masks, may also be considered.

ABM models are utilized to simulate airborne and/or surface-mediated disease transmission.

Probabilistic/Deterministic models (e.g., Dose-response model) are then utilized to assess the risk
of infection for individuals in the room.

All acquired information is fed back to the decision-making module to reassess the risk level with a
sufficient confidence interval.

4. Computational modelling, simulation, analysis,

and assessment

The biomedical RA model proposed in Section 3 can benefit from computational modelling and
simulations. These simulations can approximate real-life scenarios of pathogen transmission based
on in-vivo experiments. The effect of the HVAC system on disease transmission has been
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extensively studied as it is considered an important countermeasure against airborne disease
transmission, e.g., COVID-19. For this project, several CFD simulation experiments were conducted
by the partner of the project UNIC aimed at assessing the risk of airborne disease transmission
based on droplet dispersion expelled through coughing (Ritos et al., 2023, 2024). These experiments
examined the effect of the HVAC system’s airflow rate on the dispersion of droplets in enclosed
areas of the cruise ship. CFD simulations can often become computationally expensive as the
complexity of the problem increases. Therefore, machine learning approaches can accelerate the
simulation process by acting as surrogate models of CFD simulations. Subsequently, an
unsupervised machine learning algorithm was developed and experiments were conducted by the
partner of the project UNIC to predict droplet dispersion in enclosed spaces of a cruise ship
(Christakis & Drikakis, 2023a, 2023b; Christakis et al., 2024).

4.1 Computational Fluid Dynamics for airborne pathogen
transmission

Virus outbreaks on cruise ships present significant challenges due to their enclosed environment
and high passenger density. Managing these outbreaks has become even more critical as cruise
ships have increased in size and passenger capacity. In (Ritos et al., 2023), effects of ventilation
rates and positions of the coughing person in a typical passenger cabin room onboard a cruise ship
were investigated.
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Figure 25: lllustration of a typical passenger cabin room onboard a cruise ship, illustrating the scenario and
test case configuration considered.

The study also emphasized the importance of including evaporation models to simulate the process
accurately. A higher ventilation rate is not always the best strategy to avoid the spread of airborne
diseases, as saliva droplets can spread further at high ventilation rates. Regardless of the ventilation
strategy, they evaporate faster than the room's air renewal. One should aim for minimum droplet
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spreading inside the cabin and different ventilation strategies for occupied cabins. The authors
propose using ventilation systems at medium flow rates of around 3 air changes per hour (ACH)
when a cabin is occupied. This value is also close to the recommended value of 108 m®h from the
latest standard by the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE). The suggested value minimizes droplet spreading while maintaining good ventilation,
comfort, and energy consumption.

In (Ritos et al., 2024), the effects of ventilation strategies on mitigating airborne virus
transmission in a generic indoor space representative of a lobby area or information desk found in a
hotel, company, or cruise ship were examined. Multiphase CFD simulations were employed in
conjunction with evaporation modelling. Similar to the cabin experiments, four different ventilation
flow rates were examined based on the most updated post-COVID-19 pandemic standards from
health organizations and recent findings from research studies. Three air changes per hour provided
the best option for minimizing droplet spreading at reasonable energy efficiency. Given the results
presented in this study, excessively high flow rates, over 5 ACH, can have the opposite effect,
leading to higher droplet spreading and high energy costs and adding probable discomfort to the
occupants. Ventilation strategies like those proposed by WHO lead to results close to those observed
with the best flow rate of 3 ACH tested in this study. Higher flow rate strategies, like those proposed
by the recent ASHRAE Standard (ASHRAE, 2023) and Centers for Disease Control and Prevention
(CDC) (Disease Controls (CDC), 2023), do not offer any advantage in this case and also create
higher droplet scattering. Thus, a higher ventilation rate is not the best solution to avoid spreading
airborne diseases. Simultaneous coughing of all occupants revealed that contagious droplets could
be trapped in regions of low airflow and on furniture, significantly prolonging their evaporation time.
Moreover, multiphase flow simulations can help define ventilation standards to reduce droplet
spreading and mitigate virus transmission while maintaining adequate ventilation with lower energy
consumption.

Recently, a CFD study was carried out to investigate the dispersion of airborne respiratory droplets
and aerosols within a cruise ship passenger cabin, focusing on the influence of mechanical
ventilation jet flow angles, as the figure below shows:
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Figure 26: Sketch illustrating the inflow angle of the cooled air from the a/c unit considered in the present study:
(a) 45- and (b) 75-degree angle. Contour surface plot of the air velocity magnitude. Red color indicates the
maximum velocity of the air expelled by the a/c unit (1.14 m/s or 11 ACH).

o
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While previous research primarily concentrated on larger respiratory droplets, which rapidly settle,
this study emphasizes aerosols under 10 ym that can remain airborne for extended periods. The
findings demonstrate that slight variations in airflow can significantly impact aerosol dispersion. The
research suggests that lower ventilation rates might be beneficial in minimizing the spread of
microdroplets and aerosols. Additionally, a 75-degree inlet angle of the ventilation system effectively
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restricts the travel distance of larger droplets. However, a 45-degree angle may offer better outcomes
when a cough occurs near the ventilation unit. These insights underline the importance of tailored
air circulation strategies to reduce transmission risks in confined spaces, such as cruise ship cabins,

highlighting the need for optimized ventilation design to manage infectious disease outbreaks.
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Figure 27: Time plot of the total saliva mass of the airborne respiratory droplets located 1.4 m above the floor,
grouped into separate size ranges depending on the diameter of the droplets, for (a) 45- and (b) 75-degree
a/c inlets angle.

The effect of natural ventilation on the distribution of airborne pathogens in narrow, typical corridor
onboard cruise ships has also been investigated. Two scenarios are examined: a milder cough at 6
m/s and a stronger cough at 12 m/s. A reference baseline case with no airflow is compared to cases
featuring an incoming airflow velocity of 1 m/s (3.6 km/h), examining differences in the dispersal of
respiratory droplets from two individuals coughing spaced 5 m apart, as per the figure below:

S

Figure 28: Sketch illustrating a typical corridor on a cruise ship outside passenger cabin rooms, showcasing
the dimensions of the computational domain and the position of the two coughs.
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Both individuals cough in the direction of the airflow, assuming one-way traffic to minimize airborne
pathogen transmission. Findings indicate that airflow accelerates past the door, exceeding 3 m/s,
with gusts reaching 4 m/s due to interaction with recirculation zones. This acceleration affects droplet
dispersal. Larger droplets (>150 um) maintain a ballistic trajectory, traveling 2-4 m, potentially
increasing transmission risk but suggesting that a 5-metre distancing policy could suffice for
protection. Smaller droplets (<150 ym), especially those <100 um, spread extensively regardless of
cough strength while containing the most viral mass overall, as is illustrated in the following two
figures:

(a) Weak cough - (b) Strong cough
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Figure 29: Total mass of airborne droplets situated 1.5 m above ground in the corridor, plotted in groups of
particle sizes by diameter for (a) a weak cough, and (b) a strong cough.
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Figure 30: Trajectories for particles during 15 s after coughing for (a) a strong cough with no draft, and also
with an incoming draft of 1 m/s for (b) a weak cough, 6 m/s, and (c) a strong cough 12 m/s. Left column (red
particles) for airborne respiratory droplets with a diameter between 50—100 um, Right column (green
droplets) for particles with a diameter between 150-200 um.

Thus, distancing alone is insufficient. The study recommends that additional safety measures be
enforced, such as wearing masks, stricter usage protocols for corridors by limiting corridor use to
one person every 20-30 seconds or eliminating natural ventilation when feasible to effectively
mitigate transmission risks in such environments.

4.2 Unsupervised machine learning for predicting airborne
pathogen droplet dispersion

In (Christakis & Drikakis, 2023a) the development of a novel algorithm for unsupervised learning
called RUN-ICON (Reduce UNcertainty and Increase CONfidence) was presented. The primary
objective of the algorithm is to enhance the reliability and confidence of unsupervised clustering.
RUN-ICON leverages the K-means++ method to identify the most frequently occurring dominant
centers through multiple repetitions. It distinguishes itself from existing K-means variants by
introducing novel metrics, such as the Clustering Dominance Index and Uncertainty, instead of
relying solely on the Sum of Squared Errors, for identifying the most dominant clusters. The algorithm
exhibits notable characteristics such as robustness, high-quality clustering, automation, and
flexibility. Extensive testing on diverse data sets with varying characteristics demonstrated its
capability to determine the optimal number of clusters under different scenarios.
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In (Christakis & Drikakis, 2023b), the RUN-ICON algorithm was applied on a numerical experiment
to evaluate the RUN-ICON algorithm’s ability to represent the collective behavior of a group of 1000
non-interacting particles originating from a common point. These particles were left to propagate on
a 2D plane, following a set of ordinary differential equations, allowing multiple particles to follow the
same trajectory. The parameters of these differential equations were randomly selected from a
uniform distribution. The primary objective was to assess the algorithm’s capacity to capture the
complex dynamics exhibited by the particle group and its potential applications in simulating particle-
based systems without the need for computationally expensive inter-particle force calculations. The
particle trajectories and final positions were recorded after 10 dimensionless time units in the
dimensionless x-y plane. The particles were clustered using the RUN-ICON algorithm based on their
final positions. The algorithm separated the particles into either four clusters (for the smallest range
of parameters ¢ and d) or three clusters (for the higher ranges of parameters ¢ and d, when particle
separation was evident) with high confidence and low uncertainty. In contrast, the repeat and
Bayesian K-means and DBSCAN algorithms did not manage to separate the particles confidently.
Moreover, when noise was added to the system, RUN-ICON predicted with increased confidence
(almost 100%) the separation of the particles in five clusters. The performance of the other methods
was unsatisfactory. These findings provide evidence about the accuracy and efficiency of the RUN-
ICON algorithm, which performs extremely well in data sets where noise is present.

The RUN-ICON algorithm was also used to analyze virus droplet dynamics resulting from coughing
events within a confined environment using, as an example, a typical cruiser's cabin (Christakis et
al., 2024). It is of paramount importance to be able to comprehend and predict droplet dispersion
patterns within enclosed spaces under varying conditions. Data from multi-phase computational fluid
dynamics simulations of coughing events at different flow rates were utilized with the RUN-ICON
unsupervised learning algorithm to identify prevailing trends based on the distance travelled by the
droplets and their sizes. The analysis in this study revealed the existence of three distinct stages for
droplet dispersion during a coughing event, irrespective of the underlying flow rates. An initial stage
where all droplets disperse homogeneously, an intermediate stage where larger droplets overtake
the smaller ones, and a final stage where the smaller droplets overtake the larger ones. This is the
first time CFD is coupled with unsupervised learning to study particles' dispersion and understand
their dynamic behavior.

Understanding the dispersion of particles in enclosed spaces is crucial for controlling the spread of
infectious diseases. In (Christakis & Drikakis, 2024), an innovative approach that combines an
unsupervised learning algorithm with a Gaussian mixture model to analyze the behavior of saliva
droplets emitted from a coughing individual. The algorithm effectively clusters data, while the
Gaussian mixture model captures the distribution of these clusters, revealing underlying sub-
populations and variations in particle dispersion. Using CFD data, this integrated method offers a
robust, data-driven perspective on particle dynamics, unveiling intricate patterns and probabilistic
distributions previously unattainable. The combined approach significantly enhanced the accuracy
and interpretability of predictions, providing valuable insights for public health strategies to prevent
virus transmission in indoor environments. The practical implications of this study were profound, as
it demonstrated the potential of advanced unsupervised learning techniques in addressing complex
biomedical and engineering challenges. Moreover, it underscored the importance of coupling
sophisticated algorithms with statistical models for comprehensive data analysis. The potential
impact of these findings on public health strategies is significant, highlighting the relevance of this
research to real-world applications.
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The RUN-ICON algorithm was also used to optimize sensor placement in indoor air-conditioned
environments (Christakis et al., 2025) by integrating computational fluid dynamics simulations with
artificial intelligence techniques in an unsupervised learning framework. Spatially distinct thermal
and velocity clusters based on temperature and velocity magnitude distributions were identified.
Optimization of sensor positions within these clusters, guided by sequential least squares
programming, resulted in an effective strategy to minimize probe redundancy while maximizing
spatial coverage. The investigation highlighted the interplay between temperature, relative humidity,
velocity, and turbulence intensity, revealing critical insights into airflow behavior and its implications
for occupant comfort. In addition, the findings also underscored the potential for targeted sensor
placement to provide a robust framework for advanced indoor climate control.

5. EXPERIMENTS & RESULTS

5.1 DECISION-MAKING MODULE
5.1.1 Eating Area

For experiments regarding eating areas of the ship two representative areas were selected from the
ship schematics of the World Dream cruise ship, presented in Section 2 (Figure 2). Two adjacent
eating areas of varying surface area and passenger capacity were selected. These eating areas are
presented in Figure 31. The two examined restaurant areas, i.e., es and e had a surface area equal
to 276 m? and a maximum capacity of 42 people, and Restaurant 2 has a surface area of 379 m?
and a maximum capacity of 82 people, respectively; both restaurants have a height of 3 m.

Figure 31 Topography of the two examined restaurant areas e; and ez residing in Deck 08, highlighted with
red.

In addition, the following five risk factors were considered based on the sensors included in the smart
ship design proposed in (Triantafyllou, Kalozoumis, et al., 2024) and the most probable symptoms
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of COVID-19 that were identified by the partner HPI in Subsection 3.1.1 (Table 2). A mapping of the
available sensors and the corresponding risk factor for COVID-19 can be observed in Table 7.

Table 7 Information provided by each available sensor.

1. RNA sensor (in HVAC) Detected pathogen

2. Audio sensor Number of coughs

3. Thermal camera sensor Fever

4. RFID sensor Number of passengers, exposure time

Analysis of Risk Factors related to airborne disease transmission

Body Temperature: Elevated body temperature levels, above 39°C, assist in reducing the pathogen
concentration within the infected host while impeding its replication rate (Singh et al., 2022; Wrotek
et al., 2021). The proposed method considers the maximum body temperature detected over a
period of time for the assessment of COVID-19 TR.

Room Ventilation: An important countermeasure against airborne infectious diseases in indoor
environments is the HVAC system, which is responsible for circulating air from the outdoor
environment inside the room. This circulation is defined as the airflow rate Q (m?®/h) calculated as
follows:

Q= ACH:-V (3)
where ACH is the number of air changes per hour and V the volume of the examined area (m3).

Several studies have examined the importance of different ventilation systems, as well as the
optimal airflow rate and position of the HVAC system to mitigate the transmission of infectious
diseases (Christakis et al., 2024; Motamedi et al., 2022; Ritos et al., 2023, 2024). The Centers for
Disease Control and Prevention has proposed a minimum of 5 ACH as the optimal airflow rate (CDC,
2023). In (Ritos et al., 2023, 2024), the effect of ACH was examined through CFD simulations. The
optimal balance between HVAC effectiveness and passenger comfort for both private rooms and
public indoor areas was identified as 3 ACH by the partner of the project UNIC, while an upper
boundary of 6 ACH was suggested in (Ritos et al., 2024) and a minimum of 1.5 ACH was suggested
in (Ritos et al., 2023). These boundaries resulted from CFD simulations that were conducted by the
partner of the project UNIC. According to the identified limits and based on Eq. (3), the maximum,
minimum, and optimal airflow rates for the HVAC systemaresetasQ = 6:-V,Q = 1.5:-V,andQ =
3 -V, respectively.

Cough: The proposed method considers the number of coughs captured by audio sensors in a ship
compartment over a certain period of time to assess the TR. To determine the severity of the risk

with respect to the number of coughs per hour, the pathogen concentration in a room is estimated
based on the Wells-Riley probabilistic model (Sze To & Chao, 2010). Since the total pathogen
concentration in the room cannot be easily quantified at a given moment, it is estimated based on
the number of coughs as:

() = nc(t) ¢ (4)
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where n.(t) is the number of coughs detected over a period of time t and ¢, is the average number
of virus particles per mL emitted in one cough.

The Wells-Riley model assumes a well-mixed air distribution in indoor environments and defines
the risk of one individual contracting the infection based on the exposure time in the room as:
_anpt
P=1-e @ (5)
where P is the probability that an individual will get infected, g is the quanta emission rate (quanta/h).
The quanta describe the number of virus particles per mL emitted in the room (Sze To & Chao,
2010). The variable n, is the breathing rate (m®h), t is the exposure time (h), and Q is the airflow
rate (m%/h) in the room. The quanta emission rate (q) is calculated as:
w(t
g =52 (6)

IDs

where [D5, corresponds to the minimum infectious dose that can cause infection in 50% of the
population (Sze To & Chao, 2010).

To find the maximum number of coughs (n.(t)) the following variables were used in Eq. (5) : P = 1,
n, = 0.5 m3h (Zheng et al., 2016), t = 1 h, IDs, = 1 - 103 virus particles per mL (Karimzadeh et al.,
2021), ¢; = 1-10° virus particles per mL (Y. Wang et al., 2020) and Q = 3 -V (Ritos et al., 2024).
For example, regarding Restaurant 1 (es) with a surface area of 276 m? and a height of 3 m, the
maximum number of coughs is 200/h.

Exposure Time: In an indoor area, the exposure time increases the risk of infection for each
individual in the room. Here, the RA is performed assuming that a passenger can stay indoors for a
period of 15-120 min.

Occupancy: The population density in an indoor space affects the transmission of infectious
diseases (Braidotti et al., 2022; Moon & Ryu, 2021). Droplets emitted through coughing can travel
up to 0.92 m from the source (infectious individual) until they are no longer contributing to the
transmission of the disease, i.e., they have either evaporated or settled on the floor (Ritos et al.,
2023). Therefore, it is essential to reconsider the way that the occupancy of a room is calculated and
incorporate the distance between each person in the room in the occupancy calculation process.
This distance is defined as the minimum distance between two individuals, assuming that they are
uniformly distributed within the room. Thus, the area occupied by each person can be defined as:

D= (7)

where N is the number of people inside the room, r is the contact radius for each person in the room
(m), and 4 is the surface area of the room (m?). Since the surface area of the room is constant
r depends on the number of people inside the room. Therefore, considering that each person
occupies a surface area of D = 1 m?, the maximum radius 7,4, for a room can be calculated as:

e = i ®

Assuming that each person resides in the center of a circle characterized by a specific radius 7,4,
then the distance between two individuals is estimated as 2 - r;,,,,.. As reported in (Ritos et al., 2023),
the maximum cough range, under suboptimal HVAC settings, is denoted by the distance d. =
0.92 m. Therefore, based on Eq. (8), the risk increases as the distance between two individuals
calculated as 2 - 1,4, is less than d.. The relation between r,,,, and d. can be classified into three
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possible cases corresponding t0 2 * 1,0 < dey 2 * Tpax = dg, @nd 2 - 4, > d.. The resulting fuzzy
sets for the eating areas e1/e> can be observed in Table 8 and in Figure 32.

Table 8 Fuzzy set for each identified risk factor.

Total Total
Room Body Number Exposure .
o Number of . Risk
Ventilation Temperature of Time
Passengers
Coughs
ez [0,3369] [0,61] [2,20] [15,45] [0,0.3]
[35,38]
e1 [0,2400] [0,44] [2,10]
e2  [1685,6738] [25,97] [10,40] [30,60] [0.1,0.5]
[36,39]
e1 [1200,4800] [17,71] [5,20]
e2  [3369,6738] [61,250] [20, 81]
[38,42] [45,120] [0.3,1]
e1 [2511,5022] [50,200] [10,42]

Additionally, the correlation between each factor and the risk of disease transmission is summarized
in Table 9.

Table 9 Correlation of each factor with risk of COVID-19 transmission.

1. HVAC (Air Flow Rate) Lower, Higher 1 Moderate |

2. Coughing Lower | Higher 1

3. Fever Lower Higher |
4. Number of Passengers Lower | Higher 1

5. Surface Area Lower Higher |

6. Passenger Exposure Time Lower | Higher 1

Funded by Page 73
the European Union



D3.2 — Risk assessment methodologies, models and algorithms

Version 2.0 — Date 10.03.2025

3
o

Membershi

15 20 60 90
Time (min)

(a)

- = low ——Medium --

120

2511
HVAC Airflow (m3/h) (Restaurant 1)

(c)

= = Llow

670 1255 3767 5022

2 5 10 20 42
Number of passengers (Restaurant 1)

(e)

Medium

207

36.6
Body Temperature (°C)

(8

38.8 40 42

4
@

1
IS

Membership

viemopersnip
e 2 o o
N ) o 0o =

o

Number of Coughs

(b)

1692 3384 5076 6768
HVAC Airflow (m3/h) (Restaurant 2)

(d)

902

2 10 20 40 82
Number of Passengers (Restaurant 2)

(f)

Low

0.1

0.3
Risk
(h)

0.5 1

Figure 32 Fuzzy sets for the input factors: (a) time; (b) number of coughs; (c)-(d) HVAC airflow; (e)-
(f) number of passengers; (g) body temperature; (h) risk of COVID-19 transmission.

Fuzzy Rules

An overview of the 57 generated fuzzy rules can be observed in Figure 33. In detail, the fuzzy rules
defined for the examined problem under investigation are the following:

1. IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Low AND
Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN

Transmission Risk is Low

2. IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN

Transmission Risk is Low
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10.
11.
12.
13.

14.

ES
N

IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Medium
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Low AND
Number of Passengers in Restaurant is Medium AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is Low AND Body Temperature is Low AND Number of Coughs is Low AND
Number of Passengers in Restaurant is Low AND Time of Exposure is Medium THEN
Transmission Risk is Low

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low
THEN Transmission Risk is Low

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
Medium THEN Transmission Risk is Medium

IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is Medium
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is Medium

IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is Medium

IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN
Transmission Risk is High

IF HVAC airflow is Low AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN
Transmission Risk is High

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is High
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is High

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium
THEN Transmission Risk is High

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
High THEN Transmission Risk is High
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15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.

ES
N

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN
Transmission Risk is High

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is High
THEN Transmission Risk is High

IF HVAC airflow is Low AND Body Temperature is Medium AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN
Transmission Risk is High

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
Medium THEN Transmission Risk is Medium

IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Low AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low
THEN Transmission Risk is Low

IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is Medium AND Body Temperature is Low AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Medium THEN
Transmission Risk is Low

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Low AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low
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27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.

ES
N

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low
THEN Transmission Risk is Low

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
Medium THEN Transmission Risk is Medium

IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
Medium THEN Transmission Risk is Medium

IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is Medium

IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN
Transmission Risk is High

IF HVAC airflow is Medium AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN
Transmission Risk is High

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
High AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is Medium

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium
THEN Transmission Risk is Medium

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
High THEN Transmission Risk is Medium

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
High AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium
THEN Transmission Risk is High

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is High
THEN Transmission Risk is High

IF HVAC airflow is Medium AND Body Temperature is Medium AND Number of Coughs is
High AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN
Transmission Risk is High
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39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.

50.

ES
N

IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Low AND
Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Medium
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Low AND
Number of Passengers in Restaurant is Medium AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is High AND Body Temperature is Low AND Number of Coughs is Low AND
Number of Passengers in Restaurant is Low AND Time of Exposure is Medium THEN
Transmission Risk is Low

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is Low
AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low THEN
Transmission Risk is Low

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Low AND Time of Exposure is Low
THEN Transmission Risk is Medium

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
Medium THEN Transmission Risk is Medium

IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is Medium
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is Medium
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is Medium

IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN
Transmission Risk is High
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IF HVAC airflow is High AND Body Temperature is High AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN
Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is High
AND Number of Passengers in Restaurant is Medium AND Time of Exposure is Medium
THEN Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium
THEN Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is Medium AND Time of Exposure is
High THEN Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is Medium THEN
Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is
Medium AND Number of Passengers in Restaurant is High AND Time of Exposure is High
THEN Transmission Risk is High

IF HVAC airflow is High AND Body Temperature is Medium AND Number of Coughs is High
AND Number of Passengers in Restaurant is High AND Time of Exposure is High THEN
Transmission Risk is High
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Rule HVAC Body Number of | Number of Time Risk Rule HVAC Body Number of | Number of Time Risk
(No) Airflow Te ure Coughs P e (No) Airflow p ure Coughs F S p e

1 Low Low Low Low Low Low 29 MEDIUM HIGH MEDIUM MEDIUM MEDIUM MEDIUM
2 Low MEDIUM Low Low Low Low 30 MEDIUM HIGH HIGH MEDIUM MEDIUM MEDIUM
3 Low Low MEDIUM Low Low Low 31 MEDIUM HIGH HIGH HIGH MEDIUM HIGH
a Low Low Low MEDIUM Low Low 32 MEDIUM HIGH HIGH HIGH HIGH HIGH
5 Low Low Low Low MEDIUM Low 33 MEDIUM MEDIUM HIGH MEDIUM MEDIUM MEDIUM
6 . P I o o . 34 MEDIUM MEDIUM MEDIUM HIGH MEDIUM MEDIUM
7 e e I — T, I 35 MEDIUM MEDIUM MEDIUM MEDIUM HIGH MEDIUM
8 Low. HIGH MEDIUM MEDIUM MEDIUM MEDIUM 36 MEDIUM MEDIUM HIGH HiGH MEDIUM HIGH

37 MEDIUM MEDIUM MEDIUM HIGH HIGH HIGH
9 Low. HIGH HIGH MEDIUM MEDIUM HIGH

38 MEDIUM MEDIUM HIGH HIGH HIGH HIGH
10 Low. HIGH HIGH HIGH MEDIUM HIGH

39 HIGH Low. Low Low. Low Low.
11 Low. HIGH HIGH HIGH HIGH HIGH

40 HIGH MEDIUM Low Low. Low Low.
12 Low. MEDIUM HIGH MEDIUM MEDIUM HIGH

41 HIGH Low. MEDIUM Low. Low Low
13 Low. MEDIUM MEDIUM HIGH MEDIUM HIGH

42 HIGH Low. Low MEDIUM Low Low.
14 Low. MEDIUM MEDIUM MEDIUM HIGH HIGH

43 HIGH Low. Low Low. MEDIUM Low.
15 Low. MEDIUM HIGH HIGH MEDIUM HIGH

a4 HIGH MEDIUM Low Low. Low Low.
16 Low. MEDIUM MEDIUM HIGH HIGH HIGH

45 HIGH MEDIUM MEDIUM Low. Low MEDIUM
17 Low. MEDIUM HIGH HIGH HIGH HIGH

46 HIGH MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM
18 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM

47 HIGH HIGH HIGH HIGH HIGH HIGH
19 MEDIUM Low. Low Low Low Low

48 HIGH HIGH MEDIUM MEDIUM MEDIUM MEDIUM
20 MEDIUM MEDIUM Low Low Low Low

49 HIGH HIGH HIGH MEDIUM MEDIUM HIGH
21 HIGH HIGH Low Low Low Low

50 HIGH HIGH HIGH HIGH MEDIUM HIGH
2 MEDIUM HIGH Low Low Low Low 51 HIGH HIGH HIGH HIGH HIGH HIGH
23 e ey — LT o o ey 52 HIGH MEDIUM HIGH MEDIUM MEDIUM HIGH
24 [pgueDitM Ly ey MEDION ey L%y 53 HIGH MEDIUM MEDIUM HIGH MEDIUM HIGH
25 WAL e et sl el it 54 HIGH MEDIUM MEDIUM MEDIUM HIGH HIGH
26 MEDIUM MEDIUM Low Low Low Low 55 HIGH MEDIUM HIGH HIGH MEDIUM HIGH
27 MEDIUM MEDIUM MEDIUM Low Low Low 56 HIGH MEDIUM MEDIUM HIGH HIGH HIGH
28 MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM MEDIUM 57 HIGH MEDIUM HIGH HIGH HIGH HIGH

Figure 33 Overview of the generated fuzzy rules for risk assessment of COVID-19 disease spread.

Experimental Cases

To evaluate the effectiveness of the defined fuzzy rules, 8 different scenarios comprising various
values of input risk factors were examined for the two types of restaurants. For each of 8 scenarios,
the input factors considered were the ventilation setting as well as the max body temperature, the
total number of coughs and the total number of passengers detected over a certain period of time.
These scenarios are summarized in Table 10, where the parentheses contain the respective
linguistic values indicating the membership of a risk factor to a respective fuzzy set (L)ow, (M)edium,
or (H)igh.

The proposed method was verified using the ABM framework Vadere (Rahn et al., 2022) and
a risk index, hereinafter RiskABM, defined as the total number of infected people at the end of the
simulation over the total number of people in the environment. Furthermore, the RiskABM is
linguistically characterized using the fuzzy sets as illustrated in Figure 33(h). The ABM framework
was used to simulate 100 iterations for each case that produced corresponding RiskABM values with
a standard deviation ranging from 0.05 to 0.18.
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Table 10 Input risk factors for risk assessment of COVID-19 transmission for ei/e; eating areas.

1 1615 (L/L) 36.6 (L) 44 (MIM) 8 (MIL) 43 (M)
2 1615 (L/L) 38.0 (M) 44 (MIM) 8 (MIL) 43 (M)
3 2977 (MIM) 37.1(L) 109 (H/H) 38 (H/M) 56 (M)
4 2977 (MIM) 37.1(L) 50 (L/L) 38 (H/M) 56 (M)
5 2619 (M/M) 38.7 (H) 105 (H/H) 31 (HM) 83 (H)
6 2619 (M/M) 38.7 (H) 105 (H/H) 31 (HIM) 31 (L)
7 2964 (M/M) 40.0 (H) 107 (H/H) 34 (HM) 48 (M)
8 4017 (H/M) 38.7 (H) 50 (M/M) 25 (H/M) 32 (L)

Table 11 Risk assessment of COVID-19 transmission for e/e; eating areas using fuzzy rules.

1 0.15 (L)/ 0.15 (L) 0.78/0.78 0.18 (L) / 0.05(L)
2 0.38 (M)/ 0.45 (M) 0.61/0.78 0.15 (L) / 0.23(L)
3 0.76 (H)/ 0.71 (H) 0.69/ 0.53 0.81 (H) / 0.64(H)
4 0.64 (H)/ 0.60 (H) 0.37/0.36 0.54 (H) / 0.42(M)
5 0.79 (H) 0.41 (M) 0.73/0.70 0.81 (H) / 0.64(H)
6 0.75 (H)/ 0.58 (H) 0.64/ 0.25 0.80 (H) / 0.60(H)
7 0.15 (L)/ 0.15 (L) 0.78/0.78 0.80 (H) / 0.60(H)
8 0.38 (M)/ 0.45 (M) 0.61/0.78 0.58 (H) / 0.42(M)

Based on the results presented in Table 11, the following observations can be made:

Funded by Page 81
the European Union




D3.2 — Risk assessment methodologies, models and algorithms £
—

Version 2.0 — Date 10.03.2025 ﬁ

An increase in the total number of passengers in a room, depending on the room capacity, results
in an increase in the risk of the spread of the disease. For example, in Case 3, there is a greater risk,
i.e., Risk 1 = 0.76 in Restaurant 1 (e1), where there is a High number of passengers, compared to
the risk of Restaurant 2 (e2), i.e., Risk 2 = 0.71, where there is a Medium number of passengers.

Proper use of the HVAC system helps reduce the risk of disease spreading. For instance, in Case
8, where the system is properly configured for Restaurant 2, the risk is estimated to be lower than
for Restaurant 1, j.e., Risk 1 = 0.63 > Risk 2 = 0.60.

¢ Anincreased number of coughs increases the risk of disease spreading. This can be observed
when comparing Case 3 with Case 4, where for 109 and 50 coughs, the risks are 0.76 and 0.64,
respectively.

¢ Anincreased body temperature can lead to a higher risk of disease spreading on cruise ships.
For example, a Low body temperature equal to 36.6°C is related to a Risk 1 = 0.15 (Case 1),
which is lower than Risk 1 = 0.38 (Case 2) that is related to a Medium body temperature (38°C).

In addition, it can be observed that, in almost all cases, the proposed method is capable of assessing
the TR in accordance with the ABM framework. Moreover, in most cases the estimated TR
demonstrates high confidence ensuring the certainty of the result (Table 11). However, a difference
can be observed between the calculated risks for the Case 5-Restaurant 2, where Risk 2 is assigned
to a High TR with high confidence compared to the respective Riskasm that indicates a Medium TR.
This can be attributed to the fact that the ABM framework simulates pedestrian dynamics that are
not represented in the fuzzy rules. The interactions of the passengers were not incorporated into the
fuzzy rules, since they could not be detected by the available sensors.

Regarding cases were the confidence of the decision-making module (fuzzy rule-based system) is
low the ABM was used to increase the confidence of the RA process. For example, in Case 4 of
Table 11, the decision-making module has low confidence. By utilizing the output of the ABM, the
risk predicted for e;is validated as high, whereas for e, is medium.

Effect of masks and vaccination on airborne disease transmission

Masks are a key countermeasure for reducing airborne disease transmission. Depending on the type
of mask their efficiency may vary from 30% for cloth masks to 91% for surgical masks and up to
99.8% for N95 masks (A.-B. Wang et al., 2023). To account for this in the fuzzy rule-based system,
the number of passengers wearing masks in an area is considered as an additional risk factor.
Hence, a higher total number of people wearing masks is correlated with a reduced risk of
transmission. Furthermore, vaccination is another crucial preventive measure. For COVID-19,
vaccine effectiveness ranges from 50% to 70% (Harder et al., 2021; Law et al., 2023). Similar to
masks, the total number of vaccinated people is included as an additional risk factor, where a higher
number of vaccinated passengers is correlated with a reduced risk of disease transmission.

Fuzzy Rules with masks and vaccination

1. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is Low THEN Risk is Low

2. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is Medium THEN Risk is Low

Funded by Page 82
the European Union




D3.2 — Risk assessment methodologies, models and algorithms

Version 2.0 — Date 10.03.2025 ﬁ

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

ES
N

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low
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IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is Medium AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is Medium AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is Medium AND Time Exposure is Medium AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is High AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is High AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is High AND Time Exposure is Medium AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is High AND Time Exposure is High AND Number of Vaccinated Passengers
is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is High AND Time Exposure is High AND Number of Vaccinated Passengers
is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
wearing mask is High AND Time Exposure is High AND Number of Vaccinated Passengers
is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low
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IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is Low THEN Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Low
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IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Medium

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is Low THEN Risk is Low

IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is Medium THEN Risk is Low

IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low
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IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Medium AND Time Exposure is Low AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Medium AND Time Exposure is Low AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Medium AND Time Exposure is Low AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Medium
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IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Medium

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low
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99. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

100. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

101. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

102. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

103. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is Low THEN Risk is Low

104. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

105. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is High THEN Risk is Low

106. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

107. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

108. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

109. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Low

110. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

111. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low

112. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Low

113. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

114. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low
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115. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is Low THEN Risk is Low

116. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is Medium THEN Risk is Low

117. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated Passengers
is High THEN Risk is Low

118. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

119. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

120. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

121. IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

122. IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

123. IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

124. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low

125. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

126. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Medium AND Time Exposure is Low AND Number of Vaccinated
Passengers is High THEN Risk is Low

127. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Low THEN Risk is Low

128. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

129. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of Passengers
wearing mask is Low AND Time Exposure is Medium AND Number of Vaccinated
Passengers is High THEN Risk is Low

130. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated
Passengers is Low THEN Risk is Low
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of

Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated

Passengers is Medium THEN Risk is Low
132. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number

of

Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated

Passengers is High THEN Risk is Low

133. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated

Passengers is Low THEN Risk is Low

134. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated

Passengers is Medium THEN Risk is Low

135. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Low AND Time Exposure is Low AND Number of Vaccinated

Passengers is High THEN Risk is Low

136. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of

Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is Low THEN Risk is Medium

of

137. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of

Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is Medium THEN Risk is Low

of

138. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of

Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is High THEN Risk is Low
139. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number

of

of

Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated

Passengers is Low THEN Risk is Medium
140. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number

of

Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated

Passengers is Medium THEN Risk is Medium
141. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number

of

Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated

Passengers is High THEN Risk is Medium

142. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is Low THEN Risk is Medium

143. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is Medium THEN Risk is Low

144. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is High THEN Risk is Low

145. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is Low THEN Risk is Medium

146. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number
Vaccinated Passengers is Medium THEN Risk is Low

of
of

of
of

of
of

of
of
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147. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

148. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Medium

149. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

150. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

151. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Medium

152. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Medium

153. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low

154. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Medium

155. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

156. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is Medium AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

157. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

158. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

159. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

160. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is Low THEN Risk is Medium

161. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

162. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is Medium AND Time Exposure is High AND Number of
Vaccinated Passengers is High THEN Risk is Low
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163. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Low THEN Risk is Low

164. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is Medium THEN Risk is Low

165. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is Medium AND Number of
Vaccinated Passengers is High THEN Risk is Low

166. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Low

167. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

168. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low

169. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Low THEN Risk is Low

170. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is Medium THEN Risk is Low

171. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers wearing mask is High AND Time Exposure is High AND Number of Vaccinated
Passengers is High THEN Risk is Low
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Experimental cases with masks and vaccination

Several combinations of risk factor values were examined for both monitored environments e4 and
e2. This experimental setup can be observed in Table 12.

Table 12 Experimental cases with enhanced risk factors for e/ex.

1 1617 (L) 36.6 (L) 48 (M)
2 1617 (L) 38.3 (M) 48 (M)
3 2972 (M) 37.3 (M) 43 (M)
4 2611 (M) 39 (H) 115 (H)
5 2599 (M) 39 (H) 124 (H)

20 (H)

37 (H)

30 (H)

13 (M)

40 (M)

50 (M)

80 (H)

91 (H)

56 (M)

10 (M)

35 (H)

21 (H)

Based on the results observed in Table 13, it can be inferred that the use of masks is an important
countermeasure to disease transmission. In addition, increased number of vaccinated passengers
may mitigate the risk of disease transmission, since vaccination increases the infection resistance

of the passengers.

Table 13 Risk assessment of COVID-19 transmission using enhanced fuzzy rules.

1 0.1512 (L)
2 0.16 (L)
3 0.16 (L)
4 0.19 (L)
5 0.20 (L)

0.75

0.81

0.80

0.98

0.155 (L)
0.25 (L)
0.14 (L)
0.157 (L)

0.12 (L)
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S A

Two representative bar areas of the World Dream ship were selected for the experiments related to
high-risk public spaces of the ship. These areas, due to increased mobility and relaxed safe distance
policies between the passengers, can lead to scenarios of high transmission risk (Figures 7-9). The
bar areas examined are presented in Figure 34. The two examined indoor environments, i.e., e and
e2had surface areas of 351 m? and 250 m?, respectively. The capacity of e; and e, was set to 81
and 44 people, respectively. Both of the bar areas had a height of 3.2 m.

5.1.2 Vessel’s other high-risk public spaces
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Figure 34 Topography of the two examined bar areas e; and ez residing in Deck 08, highlighted with red.

Analysis of Risk factors

The risk factors considered in these experiments were the same as in Subsection 5.1.1. An additional
risk factor was considered to accommodate the poor distancing conditions in such scenarios. This
risk factor, hereinafter contact distance, considers the dynamics of droplet dispersion in the area
based on CFD studies that examined the maximum reach of droplets for different ventilation settings
in a public indoor area. (Triantafyllou, Kalozoumis, et al., 2024). The area occupied by a person is
defined by a surface, D (m?), of a circle with a radius, r (m), similarly to the Subsection 5.1.1. Since
the surface area of the room is constant r depends on the number of people inside the room.
Therefore, considering that each person occupies a surface area of D = 1 m?, the radius r is defined
as the contact distance between the individuals in a room. Therefore, considering that droplets
emitted through coughing can spread up to 1 m (Ritos et al., 2023, 2024), the risk increases when
2:r<1m and decreases when 2- r > 1m (Figure 35). When 2- r > 2 m the individuals are
considered safely distanced (Organization & others, 2020a).
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2.1 2.1
—> e—>
(a) (b) (c)

Figure 35 TR in a room depending on the distance between r and d.. For the cases (a)
2:r<1, (b) 2:r=1, and (c) 2-r > 1.

The correlation between the Contact Distance risk factor and the risk of COVID-19 transmission can
be summarized in Table 14.

Table 14 Correlation of risk of COVID-19 transmission with Contact Distance.

1. Contact Distance Lower 1

Higher |

Fuzzy Rules

Appropriate fuzzy rules were generated based on experts’ knowledge resulting in 154 fuzzy rules.
This set contained more rules due to the additional risk factors. The fuzzy rule set is presented as
follows:

1. IF HVAC airflow is Low ANDAND Fever is Low ANDAND Cough is Low ANDAND Number
of Passengers is Low ANDAND Time Exposure is Low AND Contact Distance is Medium
THEN Risk is Low

2. IF HVAC airflow is Low ANDAND Fever is Low ANDAND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

3. IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

4. IF HVAC airflow is Low AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

5. IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

6. IF HVAC airflow is Low AND Fever is Low AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

7. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
is Medium AND Time Exposure is Low AND Contact Distance is Low THEN Risk is Low

8. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
is Medium AND Time Exposure is Low AND Contact Distance is Medium THEN Risk is Low
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10.

11

12

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.
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IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
is Medium AND Time Exposure is Low AND Contact Distance is High THEN Risk is Low

IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers
is Low AND Time Exposure is Medium AND Contact Distance is Medium THEN Risk is Low

. IF HVAC airflow is Low AND Fever is Low AND Cough is Low AND Number of Passengers

is Low AND Time Exposure is Medium AND Contact Distance is High THEN Risk is Low

.IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of

Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
High

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

IF HVAC airflow is Low AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN Risk is High

. IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers

is Medium AND Time Exposure is Medium AND Contact Distance is Medium THEN Risk is
High

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is Medium AND Time Exposure is Medium AND Contact Distance is High THEN Risk is
Medium

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is High AND Time Exposure is Medium AND Contact Distance is Low THEN Risk is High

IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is High AND Time Exposure is Medium AND Contact Distance is Medium THEN Risk is High
IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is High AND Time Exposure is Medium AND Contact Distance is High THEN Risk is Medium
IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is High AND Time Exposure is High THEN AND Contact Distance is Low THEN Risk is High
IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is High AND Time Exposure is High THEN AND Contact Distance is Medium THEN Risk is
High
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31
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36.

37.

38.

39.

40.

41.

42.

43.

44,
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IF HVAC airflow is Low AND Fever is High AND Cough is High AND Number of Passengers
is High AND Time Exposure is High THEN AND Contact Distance is High THEN Risk is High
IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

.IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of

Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Low
THEN Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is High
THEN Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN
Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN
Risk is High
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45.
46.
47.
48.
49.
50.
51.
52.
53.
54.

55.
56.

57.
58.
59.
60.

61.

ES
N

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

IF HVAC airflow is Low AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN
Risk is High

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Low THEN Risk is
Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers
is Low AND Time Exposure is Low AND Contact Distance is Medium THEN Risk is Low

IF HVAC airflow is High AND Fever is High AND Cough is Low AND Number of Passengers
is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is High AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Low THEN
Risk is Low
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62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

77.

ES
N

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers is Medium AND Time Exposure is Low AND Contact Distance is High THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Low THEN Risk is
Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

IF HVAC airflow is Medium AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High
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78.
79.

80.

81

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

ES
N

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is High

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is High

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

.IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of

Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is High

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is High

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN
Risk is High

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

IF HVAC airflow is Medium AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN
Risk is High

IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is High

IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is High

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Low
THEN Risk is High

IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High
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94. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is High
THEN Risk is High

95. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

96. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is Medium

97.IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is High

98. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN
Risk is High

99. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

100. IF HVAC airflow is Medium AND Fever is Medium AND Cough is Medium AND
Number of Passengers is High AND Time Exposure is High THEN AND Contact Distance is
High THEN Risk is Medium

101. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low
THEN Risk is High

102. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

103. IF HVAC airflow is Medium AND Fever is Medium AND Cough is High AND Number
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is High
THEN Risk is High

104. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

105. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

106. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

107. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

108. IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

109. IF HVAC airflow is High AND Fever is Low AND Cough is Medium AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low
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110. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Low THEN
Risk is Low

111. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of
Passengers is Medium AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

112. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of
Passengers is Medium AND Time Exposure is Low AND Contact Distance is High THEN
Risk is Low

113. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is Low

114. IF HVAC airflow is High AND Fever is Low AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Low

115. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

116. IF HVAC airflow is High AND Fever is Medium AND Cough is Low AND Number of
Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk is
Low

117. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Low AND Time Exposure is Low AND Contact Distance is Medium THEN
Risk is Low

118. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Low AND Time Exposure is Low AND Contact Distance is High THEN Risk
is Low

119. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low
THEN Risk is High

120. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

121. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High
THEN Risk is Medium

122. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN
Risk is High

123. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

124. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN
Risk is High

125. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High
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126. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of

Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

127. IF HVAC airflow is High AND Fever is High AND Cough is Medium AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

128. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

129. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium

130. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

131. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

132. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is High

133. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is High

134. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN
Risk is High

135. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

136. IF HVAC airflow is High AND Fever is High AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN
Risk is High

137. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

138. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is High

139. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is Medium AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

140. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is Medium

141. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium
THEN Risk is Medium
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142. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

143. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is Low
THEN Risk is High

144. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is
Medium THEN Risk is Medium

145. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is Medium AND Time Exposure is High THEN AND Contact Distance is High
THEN Risk is Medium

146. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Low THEN
Risk is High

147. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is Medium THEN
Risk is High

148. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is Medium AND Contact Distance is High THEN
Risk is Medium

149. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low
THEN Risk is High

150. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

151. IF HVAC airflow is High AND Fever is Medium AND Cough is Medium AND Number
of Passengers is High AND Time Exposure is High THEN AND Contact Distance is High
THEN Risk is Medium

152. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Low THEN
Risk is High

153. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is Medium
THEN Risk is High

154. IF HVAC airflow is High AND Fever is Medium AND Cough is High AND Number of
Passengers is High AND Time Exposure is High THEN AND Contact Distance is High THEN
Risk is High

Experimental Cases

Following the fuzzy rule set generation, several cases that simulated varying conditions inside the
examined areas were utilized to assess the validity of the generated fuzzy rule sets. The examined
bar areas e; and e, were used to define different cases with varying ventilation, max body
temperature, total number of coughs, total number of passengers and contact distance
configurations over a period of up to 120 min. The method was evaluated in 20 cases, 6 of which
are indicatively presented in Table 16, with three (L)ow, (M)edium and (H)igh fuzzy sets for each risk
factor. Similarly with Subsection 5.1.1 the corresponding fuzzy sets were generated based on the
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examined areas and the risk factor analysis. The ranges of the fuzzy sets corresponding to each risk
factor for the bar areas examined can be observed in Table 15.

Table 15 Fuzzy sets for each risk factor corresponding to e and ez bar areas.

Total Total
Room Body Number Contact Exposure .
e Number of _. . Risk
Ventilation = Temperature of Distance Time
Passengers
Coughs
- e1 [0,3369] [35,38] [0,61] [2,20] [0,1] [15,45] [0,0.3]
- e:  [0,2400] [0,44] [2,10]
- er [1685,6738]  [36,39] [25,97] [10,40] [0.5,1.5] | [30,60] [0.1,0.5]
- ez [1200,4800] [17,71] [5,20]
er [3369,6738] [61,250] | [20, 81]
[38,42] [1,2] [45,120] [0.3,1]
ez [2400,4800] [44,200] | [10,44]

Furthermore, for each scenario, the confidence score is defined as the degree of membership
to the fuzzy set responsible for RA. The evaluation of the method was based on the results of the
ABM framework that was also employed in Subsection 5.1.1, where similarly the Riskagwm is defined
as the total number of infected over the total number of passengers in the room.

Table 16 Experimental cases with varying input risk factors for e«/e; bar areas.

1 L/L L M/M L/'M M M
2 L/L M M/M L/M M M
3 M/M M H/H H/H L H
4 M/M H H/H M/H M H
5 M/M H H/H H/H H H
6 M/M M H/H H/H H H

The results presented in Table 17 show that the proposed method aligns with the ABM tool
for RA, with high confidence in estimating the transmission risk across most cases. Despite that the
ventilation is considered an important countermeasure for airborne disease transmission, it is not
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sufficient for cases with high number of coughs, passengers and/or exposure time. In most cases,
the RA performed by the proposed method is comparable to the results obtained from the ABM
simulations, with 83.3% accuracy for 20 cases. The incorrectly predicted risk, i.e., for ez in Case 1
(Table 17), estimated by the proposed method can be attributed to the factors of passenger
movement and interactions since they are not represented in the rules.

Regarding cases were the confidence of the decision-making module (fuzzy rule-based system) is
low, the ABM was used to increase the confidence of the RA process. For example, in Case 2 of
Table 17, the decision-making module has low confidence for the e; bar area. By utilizing the output
of the ABM, the risk predicted for e is validated as medium, effectively increasing the confidence of
the RA process. Similarly, the ABM further validates the inferred risk in Case 3 for both bar areas
and in Cases 5 & 6 for bar area e;.

Table 17 Risk assessment of COVID-19 transmission for es/e; bar areas using fuzzy rules.

1 L/H 0.88/0.26 L/L
2 M/M 0.36/0.79 M/M
3 H/H 0.39/0.38 H/H
4 H/H 0.71/0.75 H/H
5 H/H 0.43/0.74 H/H
6 H/H 0.58/0.74 H/H

5.1.3 Public toilet

Public toilets in cruise ships can create a conducive environment for infectious diseases. The small
available surface area combined with poor air quality can accelerate the transmission of infectious
diseases. An infectious passenger might cough on their hands or have contaminated hands after
using the toilet. By touching other surfaces areas and especially fomites that are frequently used by
other passengers, an infectious individual can contribute to an accelerated transmission of the
disease. highly infectious. Several risk factors were identified in the literature, such as washing
hands, number of passengers entering the public toilet and disinfection of surfaces. These factors
were not sufficient to create a fuzzy rule-based system similar to the other cases. Thus, an agent-
based probabilistic model was used to assess the risk of disease transmission in this scenario.

Surface-mediated disease transmission can be considered for both airborne and waterborne
diseases, such as COVID-19 and norovirus. Therefore, in these experiments we considered one
case where a passenger infected with COVID-19 used the public toilet with a contaminated hand
and then touched the exit door handle (fomite) of room. The exit door handle is examined, since it is
a fomite that is accessed by all passengers who enter the public toilet (Figure 36).
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Door
handle
(Fomite)

Figure 36 Representative schematic of a public toilet with pathogens denoted as yellow circles.

Dose-response model combined with surface-mediated disease transmission
simulations

A dose-response model was used to calculate the risk of infection for each passenger based on:

D
P=1 —exp (_IDso) 9)
where D is the dose that each passenger is exposed and IDg is the minimum infectious dose.

To determine the number of virus particles (D) that each healthy passenger is exposed to, surface-
mediated disease transmission simulations were conducted using the ABM model in (Arav et al.,
2021). According to this ABM model, each passenger that enters the public toilet is exposed to the
virus based on:

D = Sg; * (e * Cry) (10)

where Sg; is the surface area of each finger of the passenger, e, is the transfer efficiency of the
pathogen from the hand to the orifice and C;; is the concentration of pathogen per cm?on each finger.
In this study, we consider that a passenger has equally distributed pathogens on each of their finger
and D is based on a touching event involving one finger of the passenger.

The concentration of pathogen on the hand of each passenger Cy; is calculated based on:
Cri = Sri* ern * Cro (11)

where ef, is the transfer efficiency of the pathogen from the fomite to the hand and (¢, is the

concentration of pathogen per cm?on the fomite. In contrast to (Arav et al., 2021), we consider that
the passengers do not have contaminated hands and pathogen is only transferred from the fomite
to the hand and not vice versa.

Lastly, the concentration of pathogen of the fomite Cr, decreases after each touching event based
on:

Cri
Cro = Cro —ﬁ (12)

A summary of each parameter used in the RA model can be observed in Table 18.
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Table 18 Description of each parameter used in the RA model.

Finger

2
Surface area (cm ) .
Fomite

Transfer efficiency of From fomite to hand

pathogen From hand to orifice

Concentration Fomite
2
of pathogen per cm Finger

Experimental Cases

Several experimental cases were examined based on the public toilet scenario for COVID-19 and
norovirus. For each experiment S¢; was set to 2 cm? and Sy, was set to 13.33 cm? (Arav et al., 2021).
For the COVID-19 experiments e;,, was set to 0.35, ef;, was set to 0.24 (Arav et al., 2021) and IDs,
was set to 1000 virus particles (Rahn et al., 2022). The initial pathogen on the fomite was set to 4500
pathogens/cm? based on measurements from the study in (Nicholls et al., 2023). This approximates
the pathogen concentration on the fomite, due to lack of available data regarding the transfer
mechanics of pathogen from mouth to hand due to coughing. For the norovirus experiments e;,, was
set to 0.339, ef;, was sampled from a uniform distribution [0.05,0.22] (Canales et al., 2019) and IDs,
was set to 18 virus particles (Hall, 2012). As described in (Canales et al., 2019), different materials
have different transfer efficiency. Since, the material type of the fomite is not always available, a
uniform distribution with limits the minimum and maximum transfer efficiency of the probable fomite
materials was used for the norovirus cases. Similarly to the COVID-19 experiments, the initial
pathogen concentration was set to 243 cm? based on a previous surface-based transmission study
of a norovirus outbreak (Canales et al., 2019). The results of the experiments can be observed in
Table 19. Since in these simulated scenarios the ABM was effectively part of the decision-making
process, the confidence of the RA process is sufficient, and no further simulations are required.

Table 19 Experimental cases for surface-based RA.

0.72 (H) 0.9 (H)

20 0.65 (H) 0.84 (H)

30 0.59 (H) 0.83 (H)

5.1.4  Public Swimming Pool Area

In the swimming pool scenario, a decision-making module was examined, considering diseases that
can be transmitted through water, such as norovirus, in an outdoor area. Similarly to Subsections
5.1.1 and 5.1.2, a fuzzy-rule system was generated based on risk factors derived from the literature.
These factors were first analyzed, and the generated fuzzy rules were then validated based on an
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outbreak of norovirus that was found in the literature (Paranthaman et al., 2018). Specifically, the
following risk factors were considered for the RA of disease transmission in swimming pools of the
cruise ship: chlorine levels, age, time of exposure and number of passengers. To detect the
symptoms, the available sensors included in the smart ship design proposed in (Triantafyllou,
Kalozoumis, et al., 2024) were used. In addition, the most probable symptoms of norovirus were
identified by the partner HPI (Subsection 3.1.1 and Table 3).

Analysis of risk factors related to waterborne disease transmission

In the examined outbreak, chlorine levels ranged from 0.5 to 1 mg/L (Paranthaman et al., 2018). The
epidemiological study concluded that these levels were insufficient for preventing outbreaks of highly
transmissible viruses, falling into a "grey area." The risk of norovirus disease transmission is
correlated with factors such as the chlorine levels (Sheet, 2024), the age (Paranthaman et al., 2018),
and the exposure time of individuals in the contaminated water (Pintar et al., 2010). Based on the
literature, the association between the risk factors and the risk of disease transmission was defined
and is summarized in Table 20.

Table 20 Correlation of each risk factor with risk of norovirus transmission.

Chlorine Level = Positive correlation

Age > Positive correlation

Occupancy - Negative correlation

Time - Negative correlation

Fuzzy Rules

Following the analysis of the risk factors, respective fuzzy rules were generated:

1. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time
Exposure is Low THEN Risk is Medium

2. IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Medium

3. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time
Exposure is Low THEN Risk is Medium

4. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time
Exposure is Low THEN Risk is Medium

5. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Medium AND
Time Exposure is Low THEN Risk is Medium

6. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Medium AND
Time Exposure is Low THEN Risk is Medium

7. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Medium AND
Time Exposure is Low THEN Risk is Medium

8. IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time
Exposure is Medium THEN Risk is High
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27.
28.
29.
30.

31.
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IF Chlorine Level is Low AND Age is Low AND Number of Passengers is Low AND Time
Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Medium

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Medium

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is High AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is Medium

IF Chlorine Level is Low AND Age is High AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is Medium

IF Chlorine Level is Low AND Age is High AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is Medium

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is Medium AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is Medium THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Low AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is High

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is Medium THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is Medium THEN Risk is Low
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IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is Medium THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Medium AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Medium AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Medium AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND
Time Exposure is Medium THEN Risk is Low

IF Chlorine Level is Medium AND Age is Low AND Number of Passengers is Low AND
Time Exposure is Medium THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Low AND
Time Exposure is Low THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is Medium THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is Medium THEN Risk is Low

IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is Medium THEN Risk is Low
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55. IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is Low

56. IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is Low

57.IF Chlorine Level is Medium AND Age is High AND Number of Passengers is Medium AND
Time Exposure is Medium THEN Risk is Low

58. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND
Time Exposure is Medium THEN Risk is Low

59. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND
Time Exposure is Medium THEN Risk is Low

60. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND
Time Exposure is Medium THEN Risk is Low

61. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is High THEN Risk is Low

62. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is High THEN Risk is Low

63. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is Medium
AND Time Exposure is High THEN Risk is Low

64. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is Medium

65. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is Medium

66. IF Chlorine Level is Medium AND Age is Medium AND Number of Passengers is High AND
Time Exposure is High THEN Risk is Medium

Experimental Cases

Following the validation of the generated fuzzy rules, several experiments were conducted
by considering various combinations of risk factors for a swimming pool, hereinafter ship pool, found
in the provided ship schematics (Figure 1). The selected swimming pool can also be observed in
Figure 37.

Figure 37 Schematics of the selected swimming pool on Deck 16, highlighted with red.

These experiments aimed to observe the impact of a norovirus outbreak for different conditions and
the results are provided in Table 21, where Risk denotes the risk predicted by the fuzzy rule-based
system. It can be inferred from the results that chlorine levels are a crucial factor in the RA process
and greatly affect the risk of disease transmission. For medium and high chlorine levels the risk of
disease transmission is low even for low age and high exposure time, whereas for low chlorine levels
the risk is high even for low exposure time and high number of passengers. The validation of the
defined fuzzy rules was performed based on the research of (Paranthaman et al., 2018).
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Table 21 Input risk factors and RA for various cases in the cruise ship pool.

No. Chlorine Agd Number of Time Risk
Level Passengers
1 T v .
2 Mo L M e
3 v 1l L L
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5.1.5 Risk assessment of COVID-19 for multiple spaces

For experiments regarding RA of COVID-19 for multiple spaces, 7 representative areas were
selected from the ship schematics of the World Dream cruise ship, presented in Section 2, that was
provided by the partners of the HS4U project. In addition to the two adjacent eating areas examined
in Subsection 5.1.1, four nearby rooms were selected. Specifically, a bar area (e3), a lounge area
(e4), a public toilet (es5) and a cabin (e;) were selected (Figure 38). These areas were selected due
to their proximity to each other and to further examine the RA capabilities of the system on different
types of spaces, including vessel’s low-risk public spaces (Subsection 3.4.3), public toilets and
cabins (Subsection 3.4.6) in accord with the simulated scenarios defined in Subsection 3.4, as well
as the empirical data provided in Figures 7-9.
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Selected areas for RA

Figure 38 Overview of the rooms, ey, e,, es, e,, es, e,, that were selected from Deck 8 of the provided ship
schematics for multi-space RA.

In this scenario, we consider that an infectious passenger travels through the monitored
environments (e; —eg). The infectious passenger has symptoms of an airborne infection, i.e.,
coughing and fever, that are classified as COVID-19 by the data analysis module and the DNA/RNA
sensors in the HVAC system. The RA system assesses the risk of COVID-19 transmission for each
of them and the total risk for all the activated environments (Figure 39).
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Figure 39 Overview of the RA workflow for the examined multiple-spaces scenario.

Similarly to the experiments conducted in Subsections 5.1.1 and 5.1.2, a fuzzy rule-based
system was created, based on the characteristics of the examined monitored environments. Aiming
to perform the disease transmission risk assessment, the following risk factors were identified in the
literature: airflow rate, coughs, maximum body temperature, exposure time, number of people in a
room, average distance of people in a room, number of people wearing masks and number of
vaccinated people.

Experimental Cases

For each monitored environment a so-called sub-scenario was considered. This sub-
scenario similar to the experiments in Subsections 5.1.1 and 5.1.2 represent a combination of risk
factor values, representing a disease transmission event within each monitored environment. Then
the risk predicted by the system for each sub-scenario was used to calculate the total risk of COVID-
19 transmission using the average operator in Eq. (2). In the experiments, combinations of the risk
factors were used to create RA sub-scenarios for each monitored environment. The system was
tasked to assess the risk of disease transmission for each of these sub-scenarios and was validated
using the Vadere ABM framework. The accuracy of the system was 84.2% for these experiments.

Representative results of these experiments can be observed in Figure 40, where the predicted risk
for each monitored environment and the total risk are presented. The colors green, orange, and
yellow denote low, medium, and high-risk levels, respectively. As can be observed, the fuzzy rule-
based system agrees with the ABM, and the total risk predicted for this scenario is medium.
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Figure 40 Result of the experiments for RA of multiple spaces with a) Presenting the predicted and ABM
risks for the examined scenario and b) Presenting a visualization of the workflow for predicting total risk.

Risk Mitigation

Based on the inferred risk level, the system proposes a set of actuations to mitigate the risk of

transmission (Figure 41).

b)

Room-level Actuations

Medium
Total Risk

Decrease maximum allowed passengers in
eache,

Implementation of a social distance policy of
2m.

Quantifiable
actuations

Suggest the use of masks to passengers.

Risk mitigation

Ship-level Actuations

Track and quarantine infectious individual.
Inform authorities at the next port.

Increase disinfection frequency in the ship.
Create a detailed log of the outbreak.

Crew should conduct an information
campaign for hygienic guidelines.

Figure 41 Risk mitigation actions proposed by the system.

Considering that the room-level actuations are implemented, another set of experiments were
conducted to quantify their effect. In these experiments, all passengers wear masks, follow a strict
social distance policy of 2 m and the maximum allowed passengers in each environment e are set
as equal to 75% of the capacity of the room. Based on Table 22, these actuations resulted in a low
total risk, further highlighting the advantages of the proposed system. In detail, the overall relative

risk reduction when the risk mitigation actions were applied was ~30%.

actions
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Table 22 Comparison of predicted risk of transmission with and without actuations implemented.

Predicted Risk/ Total
Monitored Risk (R;)
environments
M M L M L H M

Without
actuations

With L L L L L H L
actuations

5.2 SIMULATION MODULE

The Simulation Module is considered to be a complementary module to the RA Decision-Making
module. For the purposes of this project, three different disease transmission mechanics were
considered, namely airborne, waterborne, and surface.

The Vadere ABM framework is utilized to simulate the transmission mechanics of airborne
diseases, through a dedicated peer-reviewed airborne disease transmission model. Apart from a
complementary module, the airborne disease simulation tool was employed as a means to validate
the RA models described in Subsections 5.1.1 and 5.1.2. This way the generated RA models are
validated based on situations that approximate real-life scenarios, and the employed ABM framework
can further be used to enhance the RA process. Representative simulation cases based on the
examined scenarios are presented in the following Subsections 5.1.1 and 5.1.2. A passenger is
regarded as infected when they have absorbed more than the minimum infectious dose, i.e., 1000
virus particles. The infectious passenger is denoted with red color, the susceptible with blue and the
exposed individuals with varying shades of purple. An increased degree of exposure corresponds to
a darker shade of purple.

5.2.1 Eating Area

Airborne disease transmission simulations

Snapshots of the ABM simulations for Case 5 (Table 10 & Table 11) are depicted in Figure 42.
Healthy individuals are denoted with blue, exposed with purple, and infectious with red. Based on
these visualizations, It can be derived that a higher population density (Restaurant 1) is associated
with increased exposure of healthy individuals resulting in more infections. In addition, the high
number of coughs identified by the smart sensors result in an increased risk of disease transmission
for both monitored environments despite that Restaurant 2 (left area) has a lower population density.
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Figure 42 Result of the simulated scenarios for Case 5 (Table 10 & Table 11).
5.2.2 Vessel’s other high-risk public spaces

Airborne disease transmission simulations

Snapshots of the ABM simulations for Cases 2 and 6 (Table 17) are depicted in Figures 43 & 44. In
addition to the examined infectious, susceptible, and exposed passengers, yellow circles are
designed to represent the probable spread of emitted droplets deriving from a cough. These circles
are associated with the Contact Distance risk factor and are utilized to demonstrate its correlation
with the spread of disease. From observing Figure 44, it can be derived that closer interaction
between infected and healthy individuals is more probable in cases with a high number of
passengers inside the indoor area.

SIS 44T
F R At S A A S
et RE Eew Ve dd

a) b)

Figure 43 Initial setup of the simulated scenarios for a) Case 2 and b) Case 6 (Table 17).
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Figure 44 Result of the simulated scenarios for a) Case 2, and b) Case 6 (Table 17).
5.2.3 Public Swimming Pool Area

Waterborne disease transmission simulations

For the simulations related to waterborne disease transmission a dose-response model was
combined with an agent-based approach. The simulations were aimed at examining the transmission
of norovirus in the swimming pool scenario. Each passenger was treated as an agent that was
exposed to norovirus based on the Wells-Rilley dose-response model (Arav et al., 2021).

The minimum infectious dose is set to 18 particles for norovirus (Hall, 2012) and the exposure
dose D is calculated based on (Pintar et al., 2010). A mapping between available information utilized
by the Simulation Module and the parameters used in (Pintar et al., 2010) can be observed in Table
23.

Table 23 Mapping of the information obtain by the system with the waterborne RA ABM model parameters.

Chlorine Level 2 V;
Age > Water Consumption (mL/min)

Mass of faecal matter released—> M

Concentration per g of faecal matter=> €,
Total concentration of pathogen per L= C,,
Exposure Time=> ¢

Pool volume inL = V,,

The experiments considered the asymptomatic case of a norovirus passenger in the
swimming pool as examined in Subsection 5.1.4. Considering that a person has 0.14 g of fecal
matter in their body while swimming, My was set to 0.14 g (Paranthaman et al., 2018) and C, to 108
virus particles per g of fecal matter (Hall, 2012). In addition, the volume of the pool was calculated
based on the characteristics of the swimming pool in Figure 37 (Subsection 5.1.4). The average
water consumption of water (mL/min) was defined based on (Schets et al., 2011) and was set as
0.64 mL/min for children and 0.43 mL/min for adults. These findings were then used to set V
depending on the average age in each case scenario. Specifically, for age above 16 the V = 0.43
corresponding to adults was used, whereas for age lower than 16 the V = 0.64 corresponding to
children.
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Several cases were examined for the cruise ship swimming pool that was presented in Figure 37.
These results can be observed in Table 24, where Risk: corresponds to the risk assessment of the
biomedical RA model described in Subsection 5.1.4 and Riskasm corresponds to the calculated risk
of the agent-based dose-response model. Based on the findings in Table 24, the results of the fuzzy
rule-based RA model are similar to the ones of the AMB model. In addition, the median age of
exposed passengers and the exposure time are important risk factors for both models examined. In
Case 4, the confidence of the decision-making module is low. By using the output of the waterborne
ABM, the confidence of the RA process is increased, and the risk is considered medium.

Table 24 Calculated risk of the agent-based dose-response model.

Number of

No. Chlorine Level Age Passengers Time Risk Risk agm
1 I T Eaaamusne T
2 M T | M L L L
) M [ L B L L
4 I M 15 M

5.3 CASE STUDY ON CELESTYAL DISCOVERY
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Figure 45 Overview of the selected eating area from Deck 8 of the Celestyal Discovery.

The RA system that was created from the experiments conducted in Subsection 5.1.5 was also used
in a case study on the Celestyal Discovery. In these experiments an eating area in Deck 8 was
selected (Figure 45). These areas were considered as monitored environments and appropriate
fuzzy sets were created based on their characteristics, i.e., surface area, max capacity, airflow rate.
These characteristics were based on the ship schematics and the air-filtration and ventilation system
schematics provided in Subsection 2. According to air-filtration and ventilation system schematics
the average airflow rate of the room is set to 4000 m*h, which is classified as high according to our
analysis. In this scenario, the adherence of passengers to hygienic guidelines is low. Only a small
portion of passengers is considered vaccinated with the newest covid vaccine that provides efficient
protection not new variants of COVID-19. The scope of these experiments is to present a use case
but also try to bridge our research with CDF as an example of how our RA system could be used to
optimize the design of the rooms in a ship to minimize risk.
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In these experiments, the infectious passenger is coughing inside the room with a detected body
temperature of 38.0°C for 120 min, while the environment is operating at full capacity, i.e., number
of passengers are equal to maximum capacity. The risk of disease was then calculated, and two
additional experiments were conducted to determine the effect of reduced occupancy and calibration
of the airflow rate to an optimal value, i.e., 3000 m3/h or 3 ACH. As can be observed in Table 25, the
risk of disease transmission is high even for a medium number of coughs detected. Furthermore, an
optimal airflow rate combined with a reduced occupancy equal to half of the maximum capacity
seems to reduce the risk of disease transmission to a low risk level. This can be quantified as an up
to 32% relative risk decrease when an optimal airflow rate is implemented and a reduced capacity
equal to 50% of the max capacity is enforced.

Table 25 Experiments conducted in an eating area of the Celestyal Discovery.

HVAC NV Predicted
Risk

4000{H} 60 (M) 38.0 (L) 120 (H) 110 (H) 1(L) 0(L) 20 (L) 0.78 (H)

- 4000(H) 60 (M) 38.0(L) 120 (H) 55 (M) 1(L) 0(L) 10 (L) 0.37/(M)
- 3000 (M) 60 (M) 38.0(L) 120 (H) 55 (M) 1(L) 0(L) 10(L) 0.25 (L)

6. DISCUSSION

In this deliverable, models, methodologies and frameworks were investigated, studied and
developed with the aim of calculating the risk of disease transmission in indoor spaces of cruise
ships. In the case of cruise ships, outbreaks are frequently associated with either airborne diseases,
e.g., COVID-19 or waterborne diseases, e.g., gastrointestinal diseases. During outbreaks, cruise
ships are often quarantined until the source is identified and the spread is controlled. As a result,
modelling and predicting the evolution of disease outbreaks in closed environments is crucial for
effective mitigation. Considering the need for short-term disease prediction, novel risk assessment
systems designed to monitor and control the spread of diseases on cruise ships were proposed.

Analyzing signals from various sensors can offer valuable insights into the spread of
infectious diseases in enclosed environments. By interpreting the data from these analyses, decision
support systems can contribute to perform risk assessment of the disease spread aiming at its
mitigation. In the context of the HS4U project, several types of sensors have been integrated into
the smart ship design. These sensors were selected based on the valuable information they provide
to the RA model. Audio sensors, for example, can capture vital information related to symptomatic
passengers, such as using microphones to detect coughing in public areas on the cruise ship.
Furthermore, pathogen detection sensors for air and water—referred to as air DNA/RNA sensors
and water DNA/RNA sensors—can be incorporated into the HVAC and blackwater systems, or/and
public restrooms, to identify pathogens in wastewater, such as norovirus. These sensors can also
be placed in the ship's swimming pools and paired with chlorine level sensors. This combination
helps monitor the risk of disease outbreaks, especially in scenarios where low chlorine levels
coincide with the presence of highly contagious pathogens like norovirus. Additionally, monitoring
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passengers' body temperatures in public areas can be important for assessing disease transmission
risk. Thermal camera sensors integrated into the smart ship can help identify passengers showing
signs of fever. RFID sensors are capable of providing extra data for disease transmission risk
assessment, especially when symptoms are detected in monitored areas. These sensors track the
number of passengers in a room and offer personalized data that can assist the RA process, such
as identifying contact with infected individuals. The proposed approaches utilize information derived
from sensors, aiming to perform risk assessment of the diseases.

A cruise ship typically has multiple decks with various areas accessible to passengers, such
as cabin corridors, lounges with seating areas, shops, and outdoor spaces, such as swimming pools.
The risk of infectious disease transmission can differ across these spaces; for instance, bathrooms
and restrooms are likely to pose a higher risk than open areas. In this project, several scenarios
were selected, including the movement of infectious passengers in high- and low-risk areas, under
different conditions, e.g., with different ventilation settings, number of co-passengers in the room,
and symptoms of disease. In order to perform the risk assessment, the process starts with
monitoring, where sensors detect and identify pathogens on the ship. The data collected by these
sensors, together with information from the ship’s information system and information extracted from
the literature and web sources, are then analyzed by our proposed systems. Based on the analysis,
the introduced systems assess the risk of disease transmission. Depending on the estimated risk,
the crew is notified and is required to take action to prevent the spread of the virus, in accordance
with instructions and actuations given by the system.

Considering the above, in this chapter, regarding airborne disease outbreaks on ships, a
knowledge-based RA system was proposed aimed at preventing COVID-19. Unlike previous studies,
the proposed system incorporates a variety of smart sensors, such as thermal cameras, to detect
early symptoms of diseases across different indoor areas of the ship and assess the risk of disease
transmission. These sensors comply with the “privacy by design” policy, ensuring that passengers
consented to being monitored in both public and private areas of the ship, including cabins. The RA
process was facilitated by a decision-making module, specifically a fuzzy inference system, which is
built on identified early indicators and risk factors for the study case, such as COVID-19. The
proposed system leverages the smart ship design for early detection of infectious diseases and
proposes a framework of actions for controlling outbreaks. Furthermore, in this context, a fuzzy rule-
based decision-making module was developed based on an analysis of risk factors and early
indicators of airborne infectious diseases, including coughing and fever, incorporating expert
knowledge and information from relevant literature. The RA process within the decision-making
module generated a risk index that was used to recommend appropriate control measures to the
ship’s crew. experiments conducted in multiple areas of representative cruise ships with various
characteristics demonstrated the effectiveness of the system in real-world scenarios. Based on the
results, the following conclusions were drawn regarding the risk factors and their impact on the risk
of COVID-19 transmission:

e Therisk of disease transmission increases as the number of passengers in a room increases,
especially when the room capacity is exceeded. This highlights the importance of managing
passengers’ density to reduce the spread of infectious diseases.

e The efficient operation of the HVAC system plays a critical role in minimizing the risk of
disease transmission. Proper configuration and maintenance of the system can significantly
reduce the spread of pathogens, highlighting the need for optimized environmental control
measures.
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e The frequency of symptoms, such as coughing, is directly associated with an increased risk
of disease transmission. This highlights the need for symptom monitoring and interventions
to limit exposure to potentially infectious individuals.

e Elevated body temperatures are indicative of a higher risk of disease spread, further
reinforcing the importance of monitoring passenger health as a means of early detection and
mitigation.

e The effect of the masks and the vaccination has a great impact on the transmission of the
disease, as it reduces the risk.

The proposed approach for assessing airborne transmission risk aligns with the results derived from
the ABM framework, demonstrating high confidence in most cases and ensuring the reliability of the
outputs. However, in some cases, deviations may arise due to the simulation of passenger dynamics
in the ABM framework, which are not fully captured by the fuzzy rules.

Additional experiments were conducted to examine the risk of waterborne disease transmission of
norovirus. Based on the experiments conducted in this chapter, it was concluded that the risk of
norovirus transmission is influenced by the following factors:

e Chlorine level: As its level increases, the risk of transmission decreases.

e Age of individual: The increase in the age of individuals is associated with a decrease in the
transmission of the disease.

e Exposure time: The longer the passengers remain in contaminated water, the greater the
chance of them getting sick.

e Occupancy: The increase in the number of passengers causes an increase in the risk of
transmission of the virus.

Experiments were conducted to examine the risk of fomite-mediated disease transmission for
COVID-19 and norovirus. Based on the experiments conducted in this chapter, it was concluded
that:

e Norovirus is more infectious than COVID-19 in terms of fomite-mediated transmission routes,
which aligns with the literature.

e Risk of fomite-mediated transmission highly depends on the number of passengers that touch
the contaminated surface.

To this end, this chapter introduced a smart sensor-based risk assessment system for disease
transmission on cruise ships, demonstrating its effectiveness in real-world scenarios. Future work
includes enhancing the RA process with deep learning methods and improving sensor fusion for
real-time pathogen detection. Integrating passenger behavior modelling and social dynamics could
also refine risk estimates, while privacy-preserving techniques like federated learning would ensure
ethical compliance. These advancements will strengthen disease mitigation strategies in maritime
and other enclosed environments. Overall, the proposed biomedical RA system paves the way for
better outbreak preparedness, proactive disease mitigation, and safer environments in maritime and
other enclosed settings.
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7. CONCLUSIONS

In this document, which is a deliverable of the HS4U project describing the work performed and the
results obtained by the research performed in the context of Task 3.2 (research and development of
risk assessment methodologies, models and algorithms), a smart sensor-based biomedical risk
assessment model was developed for disease transmission on cruise ships. The proposed
biomedical risk assessment model integrates various sensors—including thermal cameras, audio
sensors, and pathogen detection systems—to monitor early indicators of infectious diseases and
assess real-time risk through a fuzzy inference system. To evaluate disease transmission dynamics
for COVID-19 and norovirus, a structured mapping process linked ship infrastructural components—
public areas, cabins, ventilation, and sewage systems—to disease spread, ensuring accurate risk
estimation. Based on this mapping, the biomedical risk assessment model was evaluated through
experiments in several representative simulated scenarios, covering eating areas, vessel’s other
high-risk areas (e.g., bars), low-risk public spaces (e.g., lounges), cabins, public toilets, outdoor
swimming pools, and combination of these spaces for short-term COVID-19 and norovirus
transmission. The biomedical risk assessment model was further enhanced by incorporating results
from Computational Fluid Dynamics and Agent-Based Model simulations that were used to model
airborne, waterborne, and surface-mediated transmission, improving the risk assessment process.
These methods were used to simulate infection spread at a micro-scale, capturing the impact of
human interactions and environmental factors on disease transmission

Evaluation of the model’s performance against validated ABMs, confirmed that our approach reliably
estimates transmission risks across different environments with an accuracy reaching up to 84%.
The results demonstrated that the biomedical risk assessment model can effectively assess and
mitigate disease spread by analyzing sensor data and providing actionable recommendations to the
crew. The system is implemented in modular components, making it adaptable to different ship
configurations and sensor setups. Within the HS4U project, this technology will be integrated into
the CDF framework, ensuring its applicability for smart ship design and future maritime health
monitoring initiatives.

Key Findings:

e The proposed biomedical risk assessment model accurately evaluates and mitigates
infection spread using sensor data and a fuzzy rule-based decision-making process.

o Several disease transmission scenarios were simulated covering a wide range of ship
infrastructural components that were selected based on available schematics, empirical data,
and insights from project partners.

e Computational Fluid Dynamics and Agent-Based Model simulations were used to simulate
airborne, waterborne, and surface-mediated infection transmission at a micro-scale,
enhancing the confidence of the risk assessment process.

e Airborne transmission is significantly influenced by passenger density, HVAC efficiency,
symptom monitoring, and protective measures such as masks and vaccination.

o Waterborne transmission is affected by chlorine levels, exposure duration, and occupancy.

e Norovirus shows a higher risk of fomite-mediated transmission compared to COVID-19.
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e The system aligns closely with results from the validated ABM, confirming its accuracy
(~84%) in real-world scenarios.

e The risk mitigation measures proposed by the biomedical RA model were capable of reducing
the risk of disease transmission by 30% on average.

e The framework is adaptable and can be deployed on various ship types with different sensor
configurations.

e Research outputs from this work have led to 10 publications in journal and conferences,
demonstrating its impact on the field.

Based on these findings, it can be inferred that the use of a sensor-based biomedical RA model such
as the one proposed in this deliverable can provide valuable information to ship operators. This
information could be used to limit the spread of disease onboard. In addition, ship operators are
advised to adopt the risk-level based mitigation measures (suggested actuations) proposed in this
study, which enhance the established safeguards already in place. These measures have been
proven effective in reducing the risk of disease transmission and allow for the gradual implementation
of stricter policies based on the severity of the epidemic outbreak. Moreover, ship manufacturers are
encouraged to incorporate smart sensors (such as those considered in this deliverable and
investigated in D3.1) in the ship design process in order to provide timely detection of infectious
diseases onboard. These sensors could also provide valuable feedback and improve the response
of the crew. Furthermore, manufacturers are advised to consider the results of the experiments
conducted in this deliverable which defined an optimal airflow rate configuration of 3 air changes per
hour (ACH) for indoor areas of cruise ships. The proposed biomedical RA model including its
simulation modules could be utilized by ship manufacturers to optimize the design of indoor areas of
the ship, e.g., define optimal density to limit disease spread even in high-risk scenarios.

As part of the HS4U project, the system will be integrated into the CDF for enhanced risk assessment
capabilities. Considering the generality of the proposed risk assessment model, its impact may
extend to future applications in the tourist industry, e.g., hotels and restaurants, as well as in
healthcare units, e.g., clinics and hospitals.
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