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ABSTRACT Cruise ships remain a popular vacation choice for millions of travelers annually. However,
the on-board environment, characterized by high population density and close-contact settings in ventilated
indoor spaces, creates ideal conditions for the spread of highly airborne transmissible respiratory diseases,
such as SARS-COV-2. This study focuses on an effective framework for managing airborne transmission
risks of both known and emerging infectious diseases, which are intensified by the growing capacity
and density of modern passenger ships, while acknowledging that other mechanisms may also contribute
to disease transmission. Hence, early risk assessment (RA) of disease transmissibility is essential for
safeguarding public health and enhancing the passenger experience, preparing the cruise industry for future
pandemics, and strengthening the overall resilience and safety of cruise operations. Fuzzy Cognitive Maps
(FCMs) offer a valuable method for modeling complex data-driven systems in the context of risk assessment.
However, traditional FCM construction is typically performed manually, which limits automation and
hampers the accurate representation of uncertainty. We propose Intuitionistic Risk Assessment FCM (IRA-
FCM), a novel framework that: (i) employs a hybrid learning approach that integrates unsupervised clustering
to reveal hidden patterns within the data with supervised learning based on labeled instances to automatically
learn the structure of an intuitionistic FCM; (ii) integrates multi-source sensor and system data with
varying uncertainty levels; and (iii) models uncertainty via hesitancy, enabling more accurate, uncertainty-
aware transmission risk assessment. Additionally, it estimates the confidence levels associated with various
degrees of risk, serving as a comprehensive decision-support tool to ensure safety throughout the cruise
duration by quantifying the uncertainty in its assessments. The effectiveness of the proposed framework is
demonstrated on a dataset representing various airborne and close contact transmission scenarios of SARS-
COV-2 within monitored areas, created using a validated agent-based model designed for airborne disease
spread. The results validate its capacity to determine the transmission risk with an average accuracy of
88.6%. The applicability of the proposed framework extends beyond cruise ships, to assess the airborne
disease transmission risk in ventilated indoor spaces with resident populations, such as apartment buildings,
hotels and hospitals.

INDEX TERMS Risk assessment, fuzzy cognitive maps, interpretability, infectious diseases.
I. INTRODUCTION
Cruise tourism is experiencing rapid growth as it can provide
a popular leisure holiday venue, with the number of cruise
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passengers projected to steadily increase [1]. However, the
high population density, enclosed environments, and shared
ventilation systems on cruise ships can create ideal con-
ditions for the rapid spread of infectious diseases among
passengers [2]. The transmission among ship passengers
and crew became a major concern during the SARS-COV-2
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pandemic, with cases and outbreaks reported on many cruise
ships. The SARS-COV-2 virus can predominantly spread
through airborne transmission and to a lesser extend through
fomites [3]. Airborne transmission of infectious diseases may
occur when viral particles, are expelled into the air through
coughing, sneezing, or even talking [4], [5]. In indoor envi-
ronments, such as the environments within a cruise ship, these
droplets may remain suspended in the air for extended peri-
ods, especially in poorly ventilated areas, increasing the risk
of exposure to nearby individuals [6]. The rapid transmission
of airborne pathogens in ventilated maritime environments
presents a significant challenge, especially with diseases
like SARS-COV-2 due to its potential for asymptomatic
spread and delayed detection. However, research on aerosol
exposure and ventilation in specific shipboard microenviron-
ments like restaurants and cabins remains notably limited [1].
Airborne diseases, including SARS-COV-2 and influenza,
disseminate through respiratory droplets and aerosols that
can persist in the air and travel widely via diffusion, con-
vection, and ventilation systems; this risk is heightened by
insufficient ventilation and prolonged exposure durations in
shared spaces [7], [8], [9], [10]. This challenge is further
compounded by the unique shipboard indoor environment,
which, unlike land-based or air-based transportation, inte-
grates work, living, and leisure within semi-enclosed spaces
where crew members reside for extended periods, exposing
them to pollutants from various sources like occupant activi-
ties, propulsion systems, and finishing materials [1].

Monitoring and controlling disease spread on cruise ships
is crucial for enhancing passenger experience, preparing
for future pandemics like SARS-COV-2 and influenza, and
ultimately improving industry resilience and safety. This
involves a multi-faceted approach: continuously monitoring
ventilation conditions and aerosol dispersion to link them
with airborne transmission risk, utilizing aerosol and ven-
tilation performance data as input for computational fluid
dynamics (CFD) simulations, and then modeling airborne
disease transmission risk in controlled passenger ship envi-
ronments. Several guidelines and protocols exist to manage
health on vessels [2], but their effectiveness largely hinges
on crew decisions and interventions. This reliance on human
action makes on-board crisis management, especially dur-
ing an epidemic, susceptible to human errors, which can be
life-threatening for severe infectious diseases. The likelihood
of such errors varies with factors like crew size, train-
ing, experience, vessel dimensions, and passenger numbers.
Therefore, an automatic risk assessment method for disease
spread monitoring and control on cruise ships is essential.
An automatic, sensor-based system capable of detecting dis-
ease symptoms in the ship’s indoor areas could effectively
monitor and control disease spread, it would significantly
reduce dependency on the human factor, thereby enhancing
passenger safety [1], [2], [11], [12], [13].

Risk assessment (RA) methods for airborne disease trans-
mission in ventilated indoor environments have primar-
ily relied on epidemiological modeling, knowledge-based

approaches, and probabilistic methods. Many studies have
focused on long-term epidemic modeling to predict infection
trends over days or weeks [14], [15], [16]. The World Health
Organization (WHO) has also developed RA frameworks
for pandemic outbreaks based on expert-driven methodolo-
gies [17]. However, these methods often lack adaptability to
real-time conditions and emerging pathogens. Knowledge-
based and probabilistic approaches have been widely applied
in RA for disease transmission in ventilated indoor environ-
ments, particularly on cruise ships. These methods generally
rely on evidence-based risk factors, such as overcrowding,
poor ventilation, port visitation, pathogen concentration, and
passenger exposure [7], [18], [19], [20]. Probabilistic models
can provide valuable long-term risk estimations, but most
existingmethods focus on infection spread over multiple days
[16] or lack temporal considerations altogether [7].
To overcome these challenges, smart sensor technologies

have been explored to enhance epidemic monitoring and risk
assessment. In accord with a recently conceptualized smart
ship design this study proposes the integration of several
smart sensors to the ship’s infrastructure for detecting early
signs of disease outbreaks. These include thermal cameras,
which identify passengers with elevated facial tempera-
tures [21], [22], [23] and audio sensors, such as microphones,
to detect coughing in public spaces [24], [25], [26]. Air
quality sensors embedded in the Heating, Ventilation, and
Air Conditioning (HVAC) system that can monitor airborne
pathogens, are still at prototype level [27], while personal-
ized RFID sensors provide real-time occupancy tracking and
passenger movement data, offering additional insights into
potential transmission pathways. The fusion of sensor-based
data with data from the ship’s information system (SIS)
provides a comprehensive, real-time framework for epidemic
monitoring, allowing for automated risk assessment and deci-
sion support in high-density environments.

Soft computing techniques offer robust solutions for com-
plex scientific challenges. Among these, Fuzzy Cognitive
Maps (FCMs) stand out as graph knowledge-based methods,
defining concepts and their causal relationships [28]. FCMs
extend fuzzy logic by integrating causal links between risk
factors, making them highly effective for modeling complex
systems [29], [30], [31], [32], [33]. They’ve proven effec-
tive in epidemic risk assessments, especially at a national
level, by combining expert knowledge with data-driven
approaches to improve decision-making amidst uncertainty
[34]. For instance, study [30] employed a hybrid-statistical
advanced-fuzzy-cognitive-map algorithm to predict SARS-
COV-2 cases using data from different countries.

Several modifications of FCMs have been proposed over
the years aimed at overcoming limitations like potential
biases introduced by experts during graph structure defini-
tion, which can compromise model accuracy [35]. Recogniz-
ing the inherent hesitation experts might have in precisely
defining relations among graph concepts, researchers intro-
duced intuitionistic FCM-I (iFCM-I) and intuitionistic FCM-
II (iFCM-II) [36], [37]. These advanced models leverage
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intuitionistic fuzzy sets (IFSs) to effectively manage uncer-
tainty, leading to more robust decision-making performance
than their conventional counterparts. A key advantage is their
built-in mechanism for assessing output quality via hesitancy
estimation. Despite these compelling benefits, iFCMs have
had limited practical applications to date, mainly in areas such
as pneumonia severity assessment [36], chemical process
control [37], time series forecasting [38], and celiac disease
prediction [39].

In this paper, we introduce a novel framework based on
iFCM-II called Intuitionistic Risk Assessment FCM (IRA-
FCM). The key contributions of this framework are:

• A novel intuitionistic FCM that automates its structural
definition using a supervised process, reducing manual
intervention and potential biases.

• Capability to integrate multi-source information encom-
passing different levels of uncertainty from different
sensors and the ship’s information system, which is a
critical step towards an essential smart ship functional-
ity.

• Comprehensive uncertainty modeling through the intu-
itionistic concept of hesitancy, which enables a more
accurate, uncertainty-informed method for assessing
transmission risk.

The proposed framework provides estimations of con-
fidence levels associated with various risk degrees. This
capability positions it as a comprehensive decision-support
tool, ensuring safety throughout the duration of a cruise
by quantitatively assessing uncertainty in its evaluations.
To the best of our knowledge this is the first data-driven
risk assessment framework for disease transmission based
on data from multiple sensors, and aims to cover the gap in
the early prevention of disease spread in ventilated indoor
spaces.

The rest of the paper is organized into five sections.
Section II includes preliminaries. The proposed framework is
presented in section III. Section IV presents the results of the
experimental study demonstrating its effectiveness. Finally,
concluding remarks and future work are summarized in the
last section.

II. PRELIMINARIES
A. FUZZY COGNITIVE MAPS
Fuzzy Cognitive Maps (FCMs) are powerful tools for mod-
eling complex systems. They are graph-based, knowledge-
driven models consisting of nodes that represent system
concepts and weighted edges that encode the causal relation-
ships among these concepts. An FCM is formally defined as
a directed graph comprisingN conceptsCi, i = 1, ..,N and
a set of weighted connections wji∈ [−1, 1], representing the
strength and direction of influence from conceptCito concept
Cj [28]. Each of the N concepts Ci, i = 1, . . . , N , of the
FCM has a value Aiϵ [0, 1]. There are three types of causal
relationships: a) positive (wji > 0), which means that an
increase in the value of Cj, causes an increase of the value of

Ci, b) negative (wji < 0), indicating that increase in the value
of Cj, causes a decrease of the value of Ci, and c) neutral(
wji = 0

)
, meaning that there is no relationship between Cj

and Ci. The construction of a Fuzzy Cognitive Map (FCM)
involves the manual definition of a set of concepts and their
corresponding weighted interconnections, a process that is
guided by the expertise of domain specialists. Following
the construction of the graph, a reasoning phase is initiated
using a specific test case and proceeds iteratively until the
FCM converges to a steady state. The values of the output
concepts at this steady state are interpreted as the system’s
inferred outcomes. During this reasoning process, the concept
activation values Aiϵ [0, 1] are updated iteratively according
to the following formulation:

At+1
i =

(
Ati +

∑N

j=1,j̸=i
Atj ·wji

)
(1)

where At+1
i represents the value of Ci at the iteration t + 1,

wji is the influence of Cj on Ci, and is a sigmoid function
such as the log sigmoid, which maps the concept values
within [0, 1] [40].

(x) =
1

1 + exp(−x)
(2)

The initial state vector A0 represents the initial concept val-
ues, for t = 0.

B. INTUITIONISTIC FUZZY COGNITIVE MAPS
Intuitionistic fuzzy sets (IFSs) [41] extend the classical fuzzy
set framework by incorporating a degree of non-membership
that is independent of the membership degree, rather than
being its complement. Given a universe of discourse G, an
IFS is formally defined as follows

R = {⟨x, µR(x), γR(x)⟩| xϵG} (3)

where µR(x)∈ [0, 1] and γR(x)∈ [0, 1] define the degree of
membership and non-membership, respectively of x ∈ G to
R⊂G. The hesitancy hR(x) of an element x ∈ G to S⊂G is
defined as follows:

hR(x) = 1 − µR(x) − γR(x) (4)

characterizing the indeterminacy (uncertainty) of the mem-
bership of x inR.

iFCM-II [37] was proposed as an extension of the origi-
nal FCM model, utilizing Intuitionistic Fuzzy Sets (IFSs) to
effectively represent uncertainty, both in determining concept
values and in assigning connection weights. An illustrative
example of the iFCM-II model is shown in Fig. 1, where
IFSs are depicted using simplified notation as {⟨vµ, vγ ⟩}i,
i = 1, . . . , N and {⟨wµ, wγ ⟩}ji, j = 1, . . . , N .
Uncertainty is captured through the hesitation degree

inherent in IFSs, reflecting the natural indecisiveness that
often characterizes human decision-making processes. Given
a constructed iFCM-II model with specified weight pairs
⟨wµ, wγ ⟩, the reasoning process is carried out by iteratively
computing the value pairs ⟨vµ, vγ ⟩ for each concept Ci,
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FIGURE 1. An example of a four-concept iFCM-II model.

i = 1, . . . , N using the following equation, which recursively
updates the corresponding IFSs:{〈

vµ, vγ
〉}
i
t+1

= F

{〈
vµ, vγ

〉}
i
t
⊕

⊕
N
j = 1
j̸=i

({〈
vµ, vγ

〉}
j
t
⊗

{〈
wµ, wγ

〉}
ji
t
)

 (5)

where the symbols ‘‘⊕’’ and ‘‘⊗’’, correspond to the summa-
tion and multiplication operators, respectively and F (R) ={〈

µ, γ

〉}
are transformation functions defined on IFSs.

As proved in [37], a pair ⟨vµ, vγ ⟩ from {⟨vµ, vγ ⟩}i
t+1 is

calculated as follows:(
vµi

)t+1
= µ

((
vµi +

(
1 − vµi

)
·σiN

)t) (6)

(
vγi

)t+1
= γ


vγi ·

∏N
j = 1
, j̸=i

(
vγj + wγ

ji − vγj w
γ
ji

)
t
(7)

where
(
vµi

)t+1 and
(
vγi

)t+1 represent the membership and
non-membership of Ci, respectively, at iteration t + 1, and
the calculation of σiN is performed by

σij =

{
vµ1 ·wµ

1i, j = 1
σi(j−1) + vµj ·wµ

ji − σi(j−1)·v
µ
j ·wµ

ji , j > 1

(8)

The variables wµ
ji and w

γ
ji represent the membership and

non-membership, respectively, of the weights corresponding
to the arcs directed from node j to node i. The real hesitancy
(h̄i) of a concept Ci is given by (9):

h̄i = 1 −
−1
µ

(
vµi

)
−

−1
γ

(
vγi

)
(9)

where F−1(S) =

{〈
−1
µ ,

−1
γ

〉}
represents the inverse of

function F(S), and −1
µ

(
vµi

)
and −1

γ

(
vγi

)
, considering −1

to be the inverse of , represent the real membership and
non-membership values of that concept.

FIGURE 2. Overview of the proposed framework.

III. METHODOLOGY
The proposed risk assessment framework consists of two
main phases: training, described in Algorithm 1, and testing
(Fig. 2). During the training phase, data related to each risk
factor are obtained from simulated scenarios representing
different shipboard environments such as cabins, lounges, and
restaurants. Each scenario includes one or more infectious
individuals exhibiting symptoms consistent with COVID-19
(e.g., coughing), among other passengers. These symptoms
are detectable by sensors installed in the monitored spaces,
which do not identify specific individuals but indicate the
presence of infection risk within the area. Both the symptoms
and their detection by the sensors are simulated, considering
a detection accuracy in line with recent studies (microphone
97% [25], fever detection 96% [21]). Then, an agent-based
model (ABM) determines the resulting number of secondary
infections. This outcome provides information about the
transmission risk. The corresponding risk factors, such as
occupancy, exposure time, and airflow conditions, are then
mapped to linguistically expressed risk states (labels) repre-
sented by fuzzy sets. In this way, the IRA-FCM is trained on
labeled datasets that capture realistic transmission dynamics.

Data sources include RFID sensors tracking the number
of occupants within the monitored environment, thermal
cameras assessing the facial temperature of the passengers,
audio sensors monitoring sounds related to symptoms, e.g.,
coughing. This data is labeled using fuzzy sets to represent
the uncertainty associated with each risk level. The resulting
dataset is then used to automatically construct the IRA-FCM
model. The construction of the IRA-FCM involves identify-
ing input and output concepts and automatically calculating
the weights between them based on the training data. As a
data-driven approach, the proposed IRA-FCM framework is
adaptable to any type of monitoring environment, such as
smart ships.

FIGURE 3. Multi-source data risk labeling.
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In the testing phase (Fig. 2), the trained IRA-FCM
model generates risk assessment recommendations, using
the data collected during a ship’s journey. It evaluates
the safety level by continuously assessing the input values
through fuzzy reasoning sessions. Each reasoning session
converges to a steady state indicating the risk levels via the
respective membership values and the hesitancy associated
with these levels, which characterizes the non-confidence
of the respective membership estimation. Therefore, the
confidence of a predicted risk can be obtained as one
minus hesitancy. Throughout this process, the framework
also provides explanations for its decisions, fostering user
trust.

A. FEATURE EXTRACTION
To evaluate infection risk, relevant factors associated with
each data stream must be defined. For instance, this study
focuses on estimating exposure to pathogen load of a per-
son, which can be translated into infection probability using
dose-response models [12]. While simple models, such as
exponential relationships, are commonly employed, their
calibration remains difficult due to uncertainties in key
parameters, including the median infective dose of SARS-
CoV-2, which may vary by host, viral variant, and trans-
mission route [12]. Infectious individuals exhale pathogens
bound to aerosols, while susceptible individuals may inhale
these particles when passing through contaminated air. The
pathogen load within an aerosol cloud varies over time,
directly influencing transmission risk. Current estimates sug-
gest that infection may require inhalation of 102 to 103

viral particles [12], though lower doses may also suffice.
Considering the uncertainty with respect to fuzzy set-based
approach is adopted, where individuals inhaling pathogen
between automatic calculated fuzzy set loads can be classi-
fied as ‘high/medium/low risk.’

The first step of the methodology involves constructing
appropriate fuzzy sets that linguistically characterize the uni-
verse of discourse E under consideration, e.g., inhalation of
pathogen from an individual. The universe of discourse is uni-
formly divided in R segments (risk levels) and each segment
r∈[0,R] is characterized by a fuzzy setAr . Fig. 2 illustrates an
example where the universe E is uniformly divided in three
segments r0, r1, r2. Each segment is associated with one of
the fuzzy sets Ar0 , Ar1 , Ar2 , each of which denotes a different
linguistically expressed risk level and is characterized by
a membership functionµrR . For instance, Ar0 is labeled as
‘‘Low’’ and Ar2 as ‘‘High’’, thereby representing a spectrum
of infection risk from low to high.

FIGURE 4. Linguistic description of a feature, e.g., of a risk factor.

The second step of the methodology involves data col-
lection, feature extraction, and data labeling according to
risk levels. Let us consider a set of K different cases, each
involving M different sensors. Each case can be described
by a feature vector xk = (x1, . . . , xM ) , k = 1, . . . ,K , and
the feature components xm capture multi-source data infor-
mation from M sensors. Each feature vector xk is associated
with a value ek∈E , such as the estimated mean inhalation
of pathogens by individuals in the monitored environment.
Based on ek each xk is associated with a ground-truth class
vectors yk = [µ1(ek ), µ2(ek ), . . . µR(ek )], where R denotes
the total number of risk levels in the training dataset and
µr (ek ) is associated with a membership degree to each fuzzy
set Ar corresponding to a risk level r .

B. LINGUISTIC DESCRIPTION OF FEATURES
The third step of the proposed methodology aims to linguis-
tically characterize every feature xm of each feature vector xk
using fuzzy sets. To facilitate consistent fuzzy set operations,
all training feature vectors are first normalized to the range
[0, 1], ensuring a common universe of discourse across all
features. Next, the feature vectors are grouped into C clusters
using a clustering algorithm, such as k−means. Each cluster
is then associated with a specific risk level, determined by
the most frequently occurring class within that cluster. The
purpose of this clustering step is to capture the relationship
between each feature and the corresponding risk level. Let
dc,r =

(
dc,r1 , . . . ,dc,rM

)
, c = 1, . . . ,C be the cluster centers

corresponding to risk level r . Each component dc,rm rep-
resents the mean value of the multi-source data collected
from the M sensors within cluster c. For each component
dc,rm a corresponding fuzzy set Adc,rm is defined. This set is
characterized by a membership function µdc,rm (xm) ∈ [0, 1],
which for simplicity is considered triangular. The top of this
triangular function is positioned at dc,rm and its base extends
to the nearest neighboring component dc

′,r ′
m , c̸=c

′

, r ̸=r ′ or
to the boundary values 0 or 1 using trapezoidal membership
function, depending onwhich is closest. An illustrative exam-
ple of the definition of fuzzy sets Adc,rm is presented in Fig. 4,
where the number of clusters is C = 6 and the number of risk
levels is R = 3. In this figure the risk level associated with
each component is characterized is by linguistic values from
‘‘Low’’ to ‘‘High’’ and it is visualized using different colors
corresponding to the identified risk levels.

Intuitionistic fuzzy sets are modeled using both mem-
bership and non-membership functions. The membership
function defined previously µdc,rm (xm) ∈[0, 1] represents
the degree to which a feature dm belongs to a specific
risk level. The corresponding non-membership function
γdc,rm (xm) ∈ [0, 1] expresses the membership of feature dm to
the other risk levels. Following the approach described in
[37], the subset of pairs of fuzzy sets fromAdc,rm ×A

dc
′
,r

′

m
where

∀c′ ̸=c, ∀r ′
̸=r that satisfy the conditions imposed by the

definition of an IFS (section II.B) are consider as pairs of
membership and non-membership functions, generating a set
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FIGURE 5. IRA-FCM example model.

of IFSs Bn
dc,rm

Bndc,rm = {xm, µdc,rm (xm) , γ
dc

′,r ′
m

(xm) |xm∈[0, 1]} (10)

where n = 1, . . . ,N and N is the number of different
generated IFSs.

C. AUTOMATIC IRA-FCM CONSTRUCTION
The fourth step of the methodology is associated with the
construction of IRA-FCM models. Unlike traditional FCMs,
which rely on expert input, the proposed framework is fully
data-driven. It automatically determines the structure of the
models and computes the weights of the interconnections
based on the training data.

In the FCM graph of IRA-FCM model, the input nodes
represent the various risk levels associated with each feature
xm, while the output nodes correspond to the overall risk
levels. Fig. 5 illustrates IRA-FCM model defined using the
proposed framework. Each input concept is associated with
a dc,rm ,m = 1, . . . ,M , r = 1, . . . ,R. The model includes
six input concepts, i.e., C1 − C6 corresponding to M = 2
features,C = 6 clusters and R = 3 risk levels. Thus, there are
three output concepts, one for each risk level. In each node of
Fig. 5, the corresponding dc,rm values for each input node and
the risk levels for each output node is presented.

FIGURE 6. Intuitionistic Fuzzy Union and Intuitionistic Intersection for the
computation of w1,7, {⟨µ, γ ⟩}1,7.

FIGURE 7. Intuitionistic Fuzzy Intersection and Intuitionistic Union for the
computation of w2,1, {⟨µ, γ ⟩}2,1.

The influence between any two connected concepts Ci and
Cj, i̸=j of the IRA-FCM is expressed by an IFS of the form

{〈
µdc,rm , γdc,rm

〉}
j,i. Two types of relations are considered within

the model: a) connections between the input and output con-
cepts, and b) connections between the input concepts.

The relationships between the input and output concepts
are defined and linguistically characterized to represent the
influence between these concepts Bj,i =

{〈
µdc,rm , γ

dc
′,r ′
m

〉}
j,i

are constructed as follows:

Bj,i = ∪
N
n=1B

n
dc,rm

(11)

The symbol ‘‘∪’’ represents the intuitionistic fuzzy union
operation performed between concepts Ci and Cj, i̸=j. Fig. 6
illustrates the intuitionistic fuzzy set union for the linguistic
characterization of input-output relation between the nodes
C1 andC7. The result of the union is the fuzzy set that is filled
with green color and has a membership µdc,rm . The result of
the intersection is represented with blue color and has a non-
membership γdc,rm .

The relationships between the input concepts are defined
as follows:

Bj,i =

(
∪
N
n=1B

n
dc,rm

)
∩

(
∪
N
n=1B

n
dc,r
m′

)
(12)

where m̸=m
′

,m,m
′

= 1, . . . ,M , i̸=j. The symbol ‘‘∩’’
represents the intuitionistic fuzzy intersection operation per-
formed between conceptsCi andCj, i̸=j. Fig. 7 illustrates the
intuitionistic fuzzy set intersection for the linguistic charac-
terization of the input-input relation of node C1 and C2. The
result of the intersection is the fuzzy set that is filled with blue
color and has a membership µdc,rm . The result of the union
is represented with green color and corresponds to a non-
membership γdc,rm .

The use of the fuzzy union operation reflects the process
involved in constructing an FCM or an iFCM, where inputs
from multiple experts are aggregated to define and model
the relationships among various factors in a given problem.
In this context, experts’ consensus regarding the strength or
existence of these relationships is captured using the fuzzy
intersection operation. In all the afore-mentioned cases, the
interconnection weights between concepts Ci and Cj, i̸=j are
calculated using the center of gravity of the fuzzy sets for
FCM and the intuitionistic center of area (ICOA) of each
Bj,i [42].

D. TESTING PHASE
Given a test input feature vector composed of the data from
various sensors x = (x1, . . . , xM ). The membership and
non-membership for each feature xm is computed. The result
is the state vector with linguistic description for each xm for
IRA-FCM that has the form

A = (
〈
µdc,11

(x1) , γdc,11
(x1)

〉
, . . . ,

〈
µdc,R1

(x1) , γdc,r1
(x1)

〉
, . . . ,

〈
µdc,RM

(xM ) , γdc,RM
(xM )

〉
) (13)

The reasoning process is then performed by iteratively cal-
culating the pairs

〈
µdc,rm , γdc,rm

〉
, where each output represents
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Algorithm 1 IRA-FCM Training
Input: Multi-source sensor data, Number of clustersC , Risk levels

R, Intuitionistic fuzzy set definitions.
Output: Weight matrix W .
// Feature Extraction
1: Collect multi-source sensor data from monitored environments;
2: Construct feature vectors xk = (x1, . . . , xM ) , k = 1, . . . ,K ;
3: Estimate the mean pathogen inhalation ek∈E from simulations;
4: Assign ground-truth fuzzy risk labels
yk = [µ1 (ek ) , µ2 (ek ) , . . . µR (ek )] ;
//Linguistic Feature Description
5: Normalize all feature vectors to [0, 1];
6: Cluster normalized features xk into Cgroups;
7: Assign each cluster to the most frequent risk level;
8: For each cluster center dc,r=

(
dc,r1 , . . . ,dc,rM

)
, c = 1, . . . ,C

do:
9: Define triangular/trapezoidal membership functions;
10: Construct intuitionistic fuzzy sets based on Eq. (10);
//Automatic IRA-FCM Construction
11: Define Concepts:
12: Input nodes = feature clusters dc,rm ;
13: Output nodes = overall risk levels R;
// Weight Learning
14: For each input–output pair (Ci, Cj), i̸=j:
15: Compute intuitionistic fuzzy union using Eq. (11);
16: For each input–input pair (Ci, Cj), i̸=j:
17: Compute intuitionistic fuzzy intersection using Eq. (12);
18: For each other pair (Ci, Cj), i̸=j:
19:Compute interconnection weights wi,j = ICOA(Bj,i);
20: Store all wi,j in weight matrix W ;

a degree of association with risk levels corresponding to the
input test feature vector.

IV. EXPERIMENTAL STUDY
A. DATASET CREATION AND PARAMETER SETTINGS
Since datasets for short-term disease transmission in the
shipboard scenarios examined are not available, a validated
ABM capable of airborne disease transmission [12] was
utilized to simulate such scenarios. This ABM serves as a
surrogate, enabling the controlled generation of simulated
outbreak scenarios across diverse ship environments with
varying risk factors such as ventilation rates and occupancy.
Each ABM simulation produces outcomes in terms of sec-
ondary infections, allowing the training process to capture
realistic epidemiological dynamics, while addressing the data
limitations.

By utilizing the aforementioned ABM, a dataset was devel-
oped to assess the effectiveness of the proposed framework
and to demonstrate its applicability to disease transmission
on board cruise ships. The dataset included various distinct
SARS-COV-2 transmission scenarios that were simulated
across eight monitored shipboard areas.

In each simulated scenario, a group of passengers was
placed in a designated area, including a single infectious
individual exhibiting symptoms consistent with COVID-19
(e.g., coughing), which are detectable by sensors installed in
the monitored space. These sensors do not identify specific

FIGURE 8. ABM-simulated monitored environment.

individuals but only detect the presence of symptoms within
the room. Therefore, the system assumes the presence of an
infectious case based on symptom detection. Subsequently,
the rest of the passengers in the simulation were considered
susceptible, i.e., healthy individuals capable of contracting
the disease.

FIGURE 9. IRA-FCM structure for infectious disease transmission risk
assessment in cruise ships.

Simulations were then conducted, allowing passengers to
interact randomly over a set period to assess the exposure
levels of healthy individuals. The number of newly infected
passengers was subsequently determined based on the sim-
ulation outcomes. The risk was determined based on the
average absorbed pathogen load. This number was then used
to determine the level of risk R of SARS-COV-2 transmission
for each simulation.

To capture the variability in population density and room
characteristics across different indoor spaces on a cruise
ship, simulations were conducted for several representative
areas. Specifically, five types of indoor environments were
examined: restaurants, bars, lounge areas, public toilets, and
private cabins. For each selected area on the representative
cruise ship, detailed simulations were performed to ana-
lyze disease transmission dynamics under varying conditions.
An example of monitored environment from ABM simu-
lations is presented in Fig. 8. The characteristics of each
monitored environment are provided in Table 1. The capacity
of each area was defined based on its typical maximum
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occupancy during peak usage, using actual ship schematics
and layout specifications. For seated areas such as restaurants
and lounges, this corresponds to the number of available seats
indicated in the ship’s design plans. In contrast, the capacity
of public toilets includes both individuals inside the facility
and those queuing outside to emulate high-exposure scenarios
during peak hours. This broader definition ensures that the
transmission risk assessment captures realistic crowding con-
ditions and potential exposure levels within these monitored
areas.

ABM simulations were performed by allowing infected
passengers to interact with each other, releasing pathogens
primarily through coughing and, to a lesser extent, breath-
ing. A total of 3,000 simulations were performed, span-
ning 300 simulations per area, with each scenario repeated
10 times to account for stochastic variability in passenger
interactions.

The results demonstrated consistency, with an average
standard deviation of approximately 300 across repeated
simulations. To perform the RA of airborne disease spread,
this work investigates the following risk factors which are
data collected by sensors: maximum body temperature (BT),
HVAC airflow (HV), exposure time (ET), total number of
occupants (TNO) in a room, occupant distance (OD), passen-
gers who wear mask (M), passenger who had been vaccinated
(V), and coughing frequency (CF). The value ranges for each
risk factor are HV = [0, 10170]m3/h, BT = [36], [41]◦C,
ET = [15,120] min, TNO = [2,88], CF = [0, 650], OD = [0,
2] m, M = [0, 88], V = [0, 88]. A detailed mapping of risk
factors with ABM parameters can be found in Table 2.

B. EXPERIMENTAL RESULTS
The results of the experiments are quantified in terms of
accuracy and Mean Square Error (MSE). The accuracy quan-
tifies the effectiveness of the framework to correctly predict
the risk level and configure the overall risk assessment for
different cases, based on their characteristics. The accuracy
is calculated by the following equation

Accuracy = P /S (14)

where P is the number of correctly predicted risk level and S
is the number of total actual simulated risk levels for all the
test cases. The MSE is calculated by the following equation

MSE =
1
R

∑R

r=1

(
µr (e) − µ

′

r (e)
)2

(15)

where µr (e), µ
′

r (e), r = 1 . . .R correspond to the actual
membership value and the predicted membership from IRA-
FCM, where a monitored environment is considered. For
the evaluation of the proposed method, we conducted a
series of experiments using a leave-one-out cross-validation
strategy for each monitoring environment. This evaluation
strategy ensures robustness by iteratively testing each data
point while training on the remainder. In addition, to assess
cross-environment generalization, we adopted a leave-one-
environment-out (LOEO) protocol, where the model is

trained on data from all but one environment and then
tested on the held-out environment. By rotating through all
environments, the LOEO strategy provides a more rigorous
evaluation of the method’s ability to generalize across differ-
ent conditions. To highlight the impact of intuitionistic fuzzy
modeling the proposed IRA-FCM is compared to the con-
ventional FCM where influence between any two connected
concepts Ci and Cj, i̸=j of the FCM is expressed by a fuzzy
set. The respective FCM will be referred to as RA-FCM in
the rest of this study.

TABLE 1. Indoor environments characteristics.

The experimental investigation involves constructing mul-
tiple instances of the RA-FCM and IRA-FCM frameworks,
tailored to different combinations of input and output con-
cepts. The weights between these concepts are automatically
learned from the training data, enabling a data-driven mod-
eling approach based on sensor-collected information. This
design allows the proposed RA-FCM and IRA-FCM frame-
works to adapt flexibly to various monitoring environments.
To evaluate themodels, we examined three distinct sets of risk
factors as inputs. The first set includesHV, TNO,OD, andCF;
the second set includes HV, CF, M, and V; and the third set
comprises all the aforementioned risk factors. The first set of
risk factor is constructed in order to examine the relationship
between the roomventilationwhen the number of persons and
their distance changes [43], [44]. The second set of risk factor
is considered in order to examine the relationship between
the room ventilation changes and the persons who have been
vaccinated andwearsmask [45]. The third set of risk factors is
considered in order to examine the performance of IRA-FCM
using all the available risk factors. Fig. 9 illustrates a repre-
sentative structure of the RA-FCM and IRA-FCM models,
where the input concepts represent all relevant risk factors
for each risk level r = 1, ..,R and the output concepts
represent the risk levels. For each experiment, the clustering
processwas carried out using the k-means algorithm [46]with
Euclidean distance, serving as a baseline clustering method.
The optimal number of clusters was determined through grid
search over a range of values from 3 to 50. The fuzzy sets
were implemented using triangular membership functions.
In the reasoning process sigmoid functions were utilized. The
hesitancy values of the IRA-FCM concepts were initially set
to 0.

The performance of the RA-FCM and IRA-FCM models
for each set of risk factors is summarized in Tables 3–5,
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TABLE 2. Correspondence of risk factors with ABM parameters.

where the mean values of accuracy and mean squared error
(MSE) are reported. The standard deviation of the respective
experiments was of the order of ±0.01. The highest accuracy
scores and the lowest MSE values are highlighted in bold.

It can be observed that IRA-FCM consistently outperforms
the RA-FCM in terms of average accuracy and MSE. Fur-
thermore, the results presented in Tables 3 and 4 demonstrate
higher accuracy compared to those in Table 5, suggesting
that interdependencies among the risk factors may negatively
impact classification performance when all factors are com-
bined. The lower MSE values reported in Table 5 indicate
greater uncertainty in the computation of membership val-
ues during the reasoning process when all risk factors are
included. This increased uncertainty likely contributes to the
observed decrease in accuracy. Additionally, these findings
suggest a significant overlap between the fuzzy sets of the
risk factors.

Furthermore, comparison with Logistic Regression (LR)
was conducted with the same multi-source feature data used
for IRA-FCM. The results are summarized in Tables 6, 7
and 8. It can be observed that across all indoor environ-
ments, IRA-FCM consistently achieves higher accuracy and
lower MSE, reflecting its ability to capture complex, non-
linear relationships and uncertainty in multi-source sensor
data.

TABLE 3. Results of RA-FCM and IRA-FCM using the first set of risk
factors.

Additional experiments were conducted following a LOEO
protocol. The results of these experiments are presented in
Tables 9 and 10, which summarize the performance of RA-
FCM, IRA-FCM, and logistic regression across all held-out
environments. These results provide a comprehensive assess-
ment of the methods’ cross-environment generalization,
highlighting their robustness when deployed in previously
unseen environments.

TABLE 4. Results of RA-FCM and IRA-FCM using the second set of risk
factors.

TABLE 5. Results of RA-FCM and IRA-FCM using the third set of risk
factors.

TABLE 6. Results of BAseline and IRA-FCM using the first set of risk
factors.

TABLE 7. Results of RA-FCM and IRA-FCM using the second set of risk
factors.

C. INTERPRETABILITY ANALYSIS
To better understand the proposed framework, an indicative
risk assessment example, using the IRA-FCM, is presented in
this subsection. Let us consider the monitoring environment
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TABLE 8. Results of RA-FCM and IRA-FCM using the third set of risk
factors.

TABLE 9. Results of RA-FCM and IRA-FCM using LOEO.

TABLE 10. Results of LR and IRA-FCM using LOEO.

FIGURE 10. Corresponding risk levels derived from previous simulation
data.

of a cruise restaurant, where the maximum number of passen-
gers is 88 and the airflow rate that defines the number of air
changes per hour and the volume of the examined area (m3)
is 2786 m3/h. The number of passengers is 35, from them
20 wear masks and 8 are vaccinated. The passengers spend
79 minutes in the restaurant with an average contact distance
of 0.37m. The number of coughs that have been counted
per minute is 85. Based on the simulation data of the same
room under varying conditions, the estimated absorption of
pathogen particles is calculated for each individual [12]. The
number of pathogens accumulated by a person describes the
person’s degree of exposure. This degree of exposure can be
translated into a risk level. In this example, the risk levels are
automatically computed from the simulations, and they are
linguistically described using fuzzy sets, as it is described in

section III-A. Figure 10 illustrates the computed fuzzy sets
(section III-A) and corresponding risk levels derived from
previous simulation data. Unlike crisp thresholds, fuzzy sets
allow for gradual transitions between categories: for example,
the red curve for high risk begins to rise below 300 particles,
indicating partial membership in that category, while full
membership is only reached at higher absorption levels. The
results indicate that a high risk of infection fromSARS-Cov-2
begins at an absorption level of approximately 800 particles,
which closely aligns with the 1000-particle threshold iden-
tified in the study as the exposure level for infection [12].
Then the rest of the fuzzy sets that describe the characteristics
of the monitored environment are computed based on the
sections III-B and III-C.

For this example, we use the constructed RA-FCM and
IRA FCM which uses the second set of risk factors that
include HV, CF, M, and V. According to the subjection III-D
the initial state vector for the monitored environment is

ARA−FCM

= (C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,

C11,C12,C13,C14,C15)

= (HVLow,CFLow,MLow,VLow,HVMedium,CFMedium,

MMedium,VMedium,HVHigh,CFHigh,MHigh,VHigh,

RiskLow, RiskMedium, RiskHigh)

= (0, 0.95, 0, 0, 0.82, 0.04, 0.51, 0, 0.17, 0, 0.48,

0.93, 0, 0, 0)

for RA-FCM and

AIRA−FCM

= (C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,

C14,C15)

= (HVLow,CFLow,MLow,VLow,HVMedium,CFMedium,

MMedium,VMedium,HVHigh,CFHigh,MHigh,VHigh,

RiskLow, RiskMedium, RiskHigh)

= (⟨0, 0.82⟩ , ⟨0.95, 0.04⟩ , ⟨0, 0.51⟩ , ⟨0, 0.93⟩ , ⟨0.82, 0.17⟩

, ⟨0.04, 0.95⟩ , ⟨0.51, 0.48⟩ , ⟨0, 0, 93⟩ , ⟨0.17, 0.82⟩ ,

⟨0, 0.95⟩ , ⟨0.48, 0.51⟩ , ⟨0.93, 0⟩ , ⟨0, 1⟩ , ⟨0, 1⟩ , ⟨0, 1⟩ )

for IRA-FCM.
Then, both the RA-FCM and the IRA-FCM iteratively

calculate their concept values, until they reach a steady
state, after t = 10 iterations. The convergence of the out-
put concepts of the RA-FCM and the IRA-FCM models,
in terms of their membership and hesitancy values, is illus-
trated in Fig. 11, Fig 12 and Fig. 13 respectively. The
results of the risk assessment are presented in Fig 14.
In Figs. 11-14 output concepts C13,C14,C15 are associated
with RiskLow, RiskMedium, RiskHigh, respectively.

In Fig. 14, the blue bars represent membership of RA-
FCM, orange bars represent membership of IRA-FCM, grey
bars represent non-membership of IRA-FCM and yellow bars
represent the respective hesitancy values of IRA-FCM. It can
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FIGURE 11. Membership convergence of RA-FCM during reasoning.

FIGURE 12. Membership convergence of IRA-FCM during reasoning.

FIGURE 13. Hesitancy convergence of IRA-FCM during reasoning.

FIGURE 14. Membership, nonmembership, hesitancy values for concepts
at t = 10 for RA-FCM and IRA-FCM.

be observed that in all cases, the non-membership values
reach zero at the steady state. This outcome is a result of the
reasoning process governed by Eq. 7 [37], demonstrating that
initial non-membership values do not significantly influence
the final decision. Furthermore, the hesitancy values decrease

for IRA-FCM nodes that contain information related to sim-
ilar risk levels.

As illustrated in Fig. 11-Fig. 14, a comparative analysis
between RA-FCM and IRA-FCM reveals notable differences
in the accuracy and interpretability of risk level classification
within the monitoring environment. Based on Fig. 11 the risk
of the monitoring environment obtained after convergence
is classified as medium (C14) using RA-FCM, however, the
method also yields relatively high membership degrees for
low (C13) and high risk levels (C15), indicating a significant
degree of uncertainty and overlap among these categories.
On the contrary, Fig. 12 illustrates the enhanced discrimina-
tive capability of IRA-FCM, which yields a more accurate
risk prediction, as it accounts for the overlap betweenmedium
and high risk—an overlap illustrated in Fig. 10. Notably,
in Fig. 13 the hesitancy values corresponding to medium
and high risks are similar, reinforcing this overlap and sup-
porting IRA-FCM’s enhanced predictive capability. Also,
Fig. 14 shows that using IRA-FCM, the membership values
of concepts C13-C15 that represent risk levels, are closer
to zero than the similar of RA-FCM. This demonstrates
that IRA-FCM can more effectively learn and represent
the inter-concept relationships, leading to more precise risk
assessments.

V. CONCLUSION
In this paper, a novel framework named IRA-FCMwas intro-
duced. The proposed framework constructs an intuitionistic
FCM for interpretable risk assessment and to the best of our
knowledge it is the first data-driven approach for disease
transmission risk assessment in ventilated indoor spaces. The
presented case study was focused on SARS-CoV-2 transmis-
sion in cruise ships; however, the proposed framework is
directly applicable in similar use cases, that include trans-
mission of other airborne diseases in ventilated indoor spaces
with resident populations, such as apartment buildings, hotels
and hospitals. The outcomes of the experiments demon-
strated the effectiveness of IRA-FCM to construct data driven
intuitionistic FCM classifiers for different data features to
determine the risk level of a monitoring environment. In addi-
tion, unlike relevant risk assessment methods it is inherently
interpretable.

The main advantages of the proposed IRA-FCM can be
summarized as:

• It can be easily adapted to different contexts of risk
assessment based on the collected data.

• It provided interpretable inference using the reasoning
process and provides information about the hesitation of
the decisions.

• It is easily integrable to applications for the integration
of multi-source information, which has been collected
from various sensors and the ship’s information system,
and it is in alignment with smart ship design.

Beyond the theoretical formulation and experimental eval-
uation, the proposed IRA-FCM framework can be readily
translated into practical applications. It can be integrated
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into real-time monitoring platforms on ships or buildings,
using data from existing sensors (e.g., CO2, ventilation
rates, occupancy) to provide continuous, interpretable risk
estimates that support operational decisions. Moreover, the
framework could be used by operators to test ‘‘what-
if’’ scenarios, such as adjusting ventilation or modifying
occupancy, to evaluate the impact of different mitigation
strategies.

A limitation of the proposed framework is that its
real-world application depends on actual training data that
are challenging to collect during real outbreaks. The depen-
dence on simulated data remains the primary limitation of the
current study, as it may not fully capture the complexity and
variability of real-world conditions. However, considering the
approximate reality provided by the simulated data, their use
for training IRA-FCM either solely or in conjunction with
actual data acquired during real outbreaks, could be sufficient
for risk assessment in real-world conditions. Moreover, the
results from the LOEO experiments revealed the challenge of
achieving consistent cross-environment generalization, indi-
cating that model performance may vary when applied to
previously unseen environments. Nevertheless, this needs to
be further investigated in future long-term studies, involving
expanded datasets and real-world deployments to enhance
both data representativeness and model generalizability.

Future work will address this challenge by investigating
model transferability and stability across multiple environ-
ments. Additionally, future research will include exploring
other applications of RA-FCM and IRA-FCM in diverse
risk assessment contexts, such as health and safety, cli-
mate risk, credit and market risks, and cybersecurity. Further
improvements may focus on enhancing IRA-FCM rea-
soning processes and alternative approaches for modeling
non-membership or hesitancy.
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